Pre-treatment of bandages may promote adhesion of antibacterial nanoparticles

NewsGuard 100/100 Score

Pre-treating the fabric surface of the bandages used to treat burns with enzymes and polyethylene glycol or cellulase may promote the adhesion of antibacterial nanoparticles and improve their bacteria-repelling ability. These are the findings of a group of scientists from the Islamic Azad University, Iran, published in The Journal of The Textile Institute.

Injuries caused by burns are a global health problem, with the World Health Organisation citing 195,000 deaths per year worldwide as a result of burns from fires alone. Burn injuries are particularly susceptible to infections, hospital-acquired or otherwise, with the bacteria Pseudomonas aeruginosa accounting for over half of all severe burn infections.

Noble metal (particularly silver) antimicrobials have long been identified as having potential for combating bacterial infection; however, there are concerns about dressings adhering to wounds and toxic effects on skin cells. Currently, scientists are researching nanoparticles which can be used to introduce these antimicrobial properties into the textiles used in dressings.

The authors of this paper have studied 150 cases to identify the most common infections in burns. In the paper, they also identified a method for giving cotton bandages antibacterial properties by coating the fabric surface with a Nickel oxide (NiO)/organic polymer/enzyme matrix in order to promote their bacteria-resistant qualities and suitability for use on burn victims.

Pseudomonas and Staphylococci infections emerged as the two most common pathogens in the Iran Burn Centre, where the study took place, and the authors evaluated their design of the bandage against these as well as fifteen other strains of bacteria. They conclude by proposing further studies into the combination of bactericidal polymers with bacteria-killing metal-oxide nanoparticles in cotton fabrics. Whilst their current design does not meet the criteria for a susceptibility test, they are hopeful that further studies will reveal the clinical relevance of their design.

Source: http://www.tandfonline.com/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough nano-shield blocks selective allergic reactions