Researchers develop new way to prevent diseases caused by herpesvirus infections

NewsGuard 100/100 Score

A new approach has been developed to combat diseases caused by herpesvirus infections, including everything from cold sores to cancer.

Researchers at the University of Leeds have discovered a way to prevent herpesviruses hijacking important pathways in cells which are required for the virus to replicate and cause disease.

Professor Adrian Whitehouse from the School of Molecular Biology and Astbury Centre for Structural Molecular Biology at the University led the five year study, the results of which are published today in the journal Nature Microbiology:http://www.nature.com/articles/nmicrobiol2016201

Professor Whitehouse said: "We've spent several years demonstrating that a protein found in all herpesviruses, recruits a protein complex in the host cell, called human TREX, to help stabilise and transport herpesvirus RNAs out of a cell's nucleus so they are turned into viral proteins.

"Now we have identified a compound which can disrupt this essential virus-host cell interaction which in turn prevents herpesviruses replicating and producing infectious particles."

The approach the researchers used was unique as it targeted the enzyme activity of a key component of the cellular human TREX complex, known as UAP56.  Inhibiting t his activity prevented the remodelling of the human TREX complex which stopped the interaction with the viral protein.

The project is a collaboration between virologists led by Professor Whitehouse and a team of chemists led by Dr Richard Foster also from the University of Leeds. Dr Foster's team performed a virtual screen of thousands of compounds to identify potential inhibitors. These were then tested for their ability to stop herpesvirus replication without damaging the host cell.

Dr Sophie Schumann, lead author on the Nature Microbiology paper and a member of the research team added: "We initially targeted the human tumour virus known as Kaposi's sarcoma-associated herpesvirus. However, further testing showed that the compound was also effective against a range of other herpesviruses which all use the same mechanism to replicate in their host cell, which is very encouraging."

Examples include Herpes simplex virus which causes cold sores and genital lesions as well as human cytomegalovirus which is associated with glandular fever and a range of conditions in immunocompromised patients and congenitally infected newborns.

Dr Foster said: "We still have a lot of work to do, but bringing together a target point and a compound is a significant finding. Now our job is to improve the quality and potency of the compound before it can operate as a future antiviral drug."

The research so far has been supported in parts by Worldwide Cancer Research, Wellcome Trust, and Biotechnology and Biosciences Research Council.

The next stage of Professor Whitehouse and Dr Foster's work, which is funded by a Cancer Research UK drug discovery award, will work towards improving the effectiveness and safety of the compound.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MONET: New AI tool enhances medical imaging with deep learning and text analysis