Novel imaging technique protects healthy tissues during cryotherapy of cancer lesions

NewsGuard 100/100 Score

A solution to a major challenge in using minimally invasive cryotherapy to target and kill cancer cells with freezing temperatures while protecting adjacent healthy tissues has been reported by a research team in Texas in an article published this week in the Journal of Biomedical Optics. The journal is published by SPIE, the international society for optics and photonics.

Cryotherapy may be used to treat internal and external cancer lesions. Patients benefit from fast recovery, low toxicity, minimal anesthesia, and comparatively low cost.

However, a major difficulty until now has been finding an efficient method of monitoring temperatures in real time in order to avoid damaging non-targeted tissues.

In "Imaging technique for real-time temperature monitoring during cryotherapy of lesions," authors Elena Petrova, Anton Liopo, Vyacheslav Nadvoretskiy, and Sergey Ermilov of TomoWave Laboratories, Inc., in Houston describe a new technique for monitoring temperature that addresses this problem.

"Petrova et al. report the use of red blood cells as temperature sensors to convert reconstructed optoacoustic images to temperature maps," said associate editor Bahman Anvari (University of California, Riverside). "The technique is potentially useful in real-time optoacoustic-based temperature measurements during cryotherapy procedures. The investigators have performed systematic and meticulous studies to validate this temperature measurement approach in tissue-mimicking phantoms."

The team investigated applying an optoacoustic temperature monitoring method for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response of red blood cells was used to convert reconstructed optoacoustic images to temperature maps, yielding the potential to prevent noncancerous tissue from being destroyed or damaged through careful monitoring of tissue temperatures during cryotherapy procedures.

"Our results provide an important step towards future noninvasive temperature monitoring in live tissues," the authors write.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New AI tool 'TORCH' successfully identifies cancer origins in unknown primary cases