Fetal limb movements can help neuron development, rat study shows

NewsGuard 100/100 Score

A newborn rat's brain development stage is close to that of a human embryo in the second half of pregnancy, so this discovery allows to hypothesize that the same movement patterns can help neuron development in humans. The research was published in Nature Communications on October 7th.

This work has been going on for four years under the helm of Rustem Khazipov and his overseas colleagues, including Ana Rita Lourenco Inacio (Mediterranean Institute of Neurobiology). The KFU Neurobiology Lab was established to study developing brain thanks to a megagrant from the Russian government.

Physiological movement has been studied by observing both the brain and the spinal cord. Thus new information has been obtained about the spinal cord activation in rats.

Azat Nasretdinov, Junior Research Associate at the Neurobiology Lab and a co-author of the latest paper, explains, "We had to find out how spinal neurons communicate during spontaneous limb movements. We simultaneously registered hind limb movements and electric activity in the spinal cord. Our main takeaway is that the activation of motor and sensor zones of the spinal cord resulting from short twitches and long complex movements is carried out through sensory feedback (activities of the movement zones of the spinal cord lead to limb movements and thus to sensor zone activation), so we think these spontaneous movements are the main instrument of sensorimotor synchronization. One of the proofs is that spinal cord activity diminished when sensory signals from the limbs were disconnected. The final confirmation came during in vitro experiments on spinal cords - sensory and motor zones both demonstrated bursts of activity, but with little correlation because isolated spinal cord preparations had no anatomical feedback".

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research provides insight into how the brain translates motivation into goal-oriented behavior