Study links heart failure biomarker to tumors observed in rare genetic diseases

NewsGuard 100/100 Score

Galectin-3, a protein that promotes cancer cell growth and is used as a biomarker for heart failure, has been linked to tumors observed in two rare genetic diseases, according to a study published July 11, 2017, in eLife (https://doi.org/10.7554/eLife.23202) by Klover, et al.

Researchers at the Uniformed Services University (USU) and the National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health have discovered that galectin-3 is produced by tumor cells in tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM).

According to the Tuberous Sclerosis Alliance, "TSC is a genetic disorder that causes tumors to form in many different organs, primarily in the brain, eyes, heart, kidney, skin and lungs." Women with TSC are highly susceptible to developing LAM, and LAM also occurs rarely in those without TSC.

LAM is a lung disease that typically attacks women "during the prime of their lives and is characterized by an abnormal growth of smooth muscle cells, especially in the lungs, lymphatic system and kidneys. Unregulated growth of these cells can lead to loss of lung function, accumulation of lymph rich-fluid in the chest and abdomen and growth of tumors in the kidneys," according to The LAM Foundation.

Both TSC and LAM are caused by mutations in the TSC1 or TSC2 genes.

Dr. Thomas Darling, professor and chair of Dermatology at USU, and Dr. Joel Moss, deputy branch chief of the Cardiovascular and Pulmonary Branch at NHLBI, and their team of researchers, worked with The American Genome Center at USU to closely examine molecular pathways affected by TSC2 mutation, and found that galectin-3 was elevated in tumors from patients with TSC or LAM. They found that serum levels of galectin-3 correlated with lung disease severity and with the presence of renal tumors. The researchers now believe this could help to assess treatment response in TSC and LAM and to detect cancers with mutations in TSC1 or TSC2.

First author Dr. Peter Klover, a senior research associate in USU's Department of Dermatology, also examined mesenchymal cells – cells that form connective tissue and skin – and found that those which did not have the TSC2 gene reproduced aspects of TSC disease. This would be useful for finding new treatment modalities and markers of disease severity.

Ultimately, these findings have important implications for precision medicine approaches to treating other diseases associated with the loss of the TSC2 gene, helping to discover new treatments and other markers for disease diagnosis and prognosis.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning system offers new hope for diagnosis of rare genetic disorders