Scientists unveil role of microRNAs in regulating neuroblastoma, pointing to new therapeutic possibilities

NewsGuard 100/100 Score

Neuroblastoma is one of the most common and lethal types of childhood cancers. In a paper published online today in OncoTarget, a researcher at the University of Texas Health Science Center at San Antonio unveils the important role of microRNAs in regulating neuroblastoma development, pointing to new therapeutic possibilities.

Neuroblastomas, which account for 15 percent of childhood cancer deaths, happen when some cells do not differentiate and grow as they should. A promising type of therapy called differentiation therapy targets these malignant cells so that they can resume the process of differentiating into mature cells.

Unlike conventional chemotherapies, this new approach to cancer therapy has fewer toxic side effects, and gives hope for a cancer treatment that is gentler on young bodies. But so far only a few differentiation agents have been successfully used to treat neuroblastoma, and more than half of the young patients treated with such agents still see their cancer return.

To find new treatments, researchers needed improved laboratory screening techniques, and now one has been developed by Liqin Du, Ph.D., an assistant professor in the Department of Cellular and Structural Biology, and her team at the Greehey Children's Cancer Research Institute at the UT Health Science Center.

MicroRNAs are small RNA molecules involved in gene expression, and play an important role in cell development. This screening approach revealed several microRNA molecules that induce the process of cell differentiation, and those are key to developing new drugs.

"Development of new agents for treating neuroblastoma has been greatly hampered by the lack of efficient high-throughput screening approaches," Dr. Du said. "In our study, we applied a novel high-content screening approach that we recently developed to investigate the role of microRNAs in neuroblastoma differentiation.

"We identified a set of novel microRNAs that are potent inducers of neuroblastoma cell differentiation and found that mimics (synthetic fragments of nucleic acid used to raise microRNA levels in cells) of some of the identified microRNAs are much more potent in inducing neuroblastoma cell differentiation than the current differentiation treatments.

"These mimics are promising new drugs for neuroblastoma differentiation therapy," Dr. Du said. "We look forward to investigating this further in the future.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Tiny DNA circles are key drivers of cancer formation, study suggests