Is COVID-19 a risk factor for Alzheimer's disease?

In a recent review published in the Journal of Neurochemistry, researchers evaluate the impact of the coronavirus disease 2019 (COVID-19) on Alzheimer's disease (AD) pathology.

Study: COVID-19 and the impact on Alzheimer Study: COVID-19 and the impact on Alzheimer's disease pathology. Image Credit: alexialex / Shutterstock.com

Background

COVID-19 primarily affects older individuals with medical disorders that compromise their immunity. The varied neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection indicate that the virus could impact the brain in several ways.

Previous studies have reported that viral infections may result in neurodegeneration. Since COVID-19 and AD share risk factors and pathological characteristics, there have been significant public health concerns regarding the neurological impact of SARS-CoV-2 infection and its probable contribution to AD onset and progression through inflammation.

Pathogenesis and risk factors of AD and COVID-19

AD is characterized by increases in amyloid plaques, neurofibrillary tangles (NFTs), neuroinflammation, and neuronal loss. Extracellular amyloid plaques, which are predominant in the hippocampus and neocortex, develop due to amyloid beta (Aβ) peptide accumulation, which results from amyloidogenic processing and amyloid precursor protein (APP) cleavage by proteolytic enzymes such as beta- and gamma-secretase.

NFTs are abnormal filaments comprising misfolded and abnormally hyperphosphorylated tau proteins that accumulate in axons and dendrites and lead to neuronal loss. NFT accumulation occurs in the entorhinal cortex, CA1, and subiculum hippocampal regions. Aβ accumulation results in glial cell activation and inflammation.

Astrocytes are the most abundant glial cell type in the central nervous system (CNS). Upon activation, astrocytes and microglia secrete pro-inflammatory cytokines such as tissue necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-1 (IL-1), and IL-6. The release of these cytokines can induce neuronal damage and Aβ production, which is associated with elevated Aβ42/Aβ40 ratios, tau pathology, and neurotoxicity.

Risk factors for COVID-19 include age and certain comorbidities like diabetes, obesity, cardiovascular disease, and hypertension. Previous studies have indicated pre-existing dementia is a prominent risk factor for COVID-19 severity and mortality. Apolipoprotein E4 (APOE4), the strongest genetic risk factor for AD, can also enhance COVID-19 risk.

SARS-CoV-2 infections, neurodegeneration, and Alzheimer's disease

Viral infections such as COVID-19 are associated with an increased risk of cognitive decline and neurodegenerative diseases. SARS-CoV-2 has amyloidogenic properties and can initiate amyloid aggregation. SARS-CoV-2 infection can increase Aβ42 protein neurotoxicity in brain cells, impair Aβ42 clearance from the blood, and enhance amyloid protein aggregation in the cerebrospinal fluid (CSF).

The presence of Aβ42 can enhance SARS-CoV-2 spike (S) protein-angiotensin-converting enzyme 2 (ACE2) interactions, thus facilitating entry into the host and stimulating the release of inflammatory cytokines like IL-1β and IL-6, which are linked to Aβ deposition and impaired neurogenesis in the hippocampus.

ACE2 elevation in AD murine models reduces Aβ42 accumulation in the hippocampus, reduces hyperphosphorylated tau protein and inflammatory cytokine levels in brain cells, and improves cognition. Therefore, ACE2 inhibition, which has been observed during SARS-CoV-2 infection, may worsen AD-related neuroinflammation and pathology.

ACE2 regulates brain-derived neurotrophic factor (BDNF) levels, essential for neurogenesis, cognition, and development. Reduced BDNF can increase tau protein phosphorylation, neuroinflammation, and neurodegeneration among SARS-CoV-2-infected individuals. Researchers have identified ACE2-expressing CNS cells such as microglia, neurons, astrocytes, and oligodendrocytes as probable interventional targets.

Experimental coronavirus infections in the CNS of mice have stimulated astrocytes and microglia related to pro-inflammatory cytokine and chemokine release that activate both the innate and adaptive immunological systems. SARS-CoV-2-induced microglial activation, partly regulated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome, impairs Aβ protein clearance and increases neuroinflammation-related gene expression.

Post-mortem analysis of brains from SARS-CoV-2-infected individuals exhibits gliosis and immune cell accumulation associated with axonal injury and blood-brain barrier (BBB) disruption and, as a result, increased capillary permeability and endothelial damage. Elevated serological neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) levels among moderate-to-severe COVID-19 patients indicate neuronal and astrocytic injury.

One year after severe COVID-19, reduced axonal density has been reported in the superior longitudinal fasciculus corpus callosum and corona radiata of the brain. Alterations in the olfactory cortical and limbic systems, including tissue injury and reduced gray matter thickness, have also been reported.

Conclusions

Overall, the study findings highlight the link between COVID-19 and AD, with SARS-CoV-2 infections linked to neuroinflammation, neurodegeneration, and long-term cognitive impairment. These findings indicate that both COVID-19 and AD have synergistic effects; however, further research is required to elucidate their long-term implications.

Journal reference:
Pooja Toshniwal Paharia

Written by

Pooja Toshniwal Paharia

Pooja Toshniwal Paharia is an oral and maxillofacial physician and radiologist based in Pune, India. Her academic background is in Oral Medicine and Radiology. She has extensive experience in research and evidence-based clinical-radiological diagnosis and management of oral lesions and conditions and associated maxillofacial disorders.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Toshniwal Paharia, Pooja Toshniwal Paharia. (2023, November 01). Is COVID-19 a risk factor for Alzheimer's disease?. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/news/20231023/Is-COVID-19-a-risk-factor-for-Alzheimers-disease.aspx.

  • MLA

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Is COVID-19 a risk factor for Alzheimer's disease?". News-Medical. 31 October 2024. <https://www.news-medical.net/news/20231023/Is-COVID-19-a-risk-factor-for-Alzheimers-disease.aspx>.

  • Chicago

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Is COVID-19 a risk factor for Alzheimer's disease?". News-Medical. https://www.news-medical.net/news/20231023/Is-COVID-19-a-risk-factor-for-Alzheimers-disease.aspx. (accessed October 31, 2024).

  • Harvard

    Toshniwal Paharia, Pooja Toshniwal Paharia. 2023. Is COVID-19 a risk factor for Alzheimer's disease?. News-Medical, viewed 31 October 2024, https://www.news-medical.net/news/20231023/Is-COVID-19-a-risk-factor-for-Alzheimers-disease.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Genetic risk factors for long-COVID uncovered in a large multi-ethnic study