Study: Borna disease virus does not contain exact copies of genomic RNAs

NewsGuard 100/100 Score

Like bacteria, viruses have their own genome. The ends or termini of a viral RNA are especially interesting for virologists because they play an important role in reproduction and in the reaction of the innate immune system to the virus. The genetic information is reproduced when a strand of the genome is transcribed into a complementary strand of the so-called antigenome. This strand then serves as the model or template for the synthesis of a new genome.

As a result of this simple copying mechanism, the two strands are normally exact copies of each another. However, this is not the case with the Borna disease virus (BDV), which belongs to the group of negative-strand RNA viruses. When one compares the genome and the antigenome of the BDV, one finds that the two strands possess four additional nucleotides each as components of the RNA at their 3' termini. There is no template on the complementary strand for this elongation, and the process thus cannot be explained with the standard model of reproduction.

In a new study, "Genomic RNAs of Borna disease virus are elongated on internal template motifs after realignment of the 3' termini," a Freiburg research group led by Dr. Urs Schneider (now Québec, Canada) at the Institute of Microbiology and Hygiene, Department of Virology, was able to demonstrate that the additional nucleotides are not transcribed from the complementary strand but from a template located within the newly synthesized viral strand.

The study describes the use of internal templates for RNA synthesis for the first time and presents a previously unknown possibility for modifying viral genome termini. The significance of genome elongation for the reproduction and pathogenesis of the BDV is not yet completely clear. However, there are indications that this mechanism serves the dual function of preserving the integrity of the genome termini and making them unidentifiable for the innate immune system. Further experimentation will be necessary to clarify the significance of the "realignment and elongation" mechanism described in the study.

In some animals (e.g., horses), the BDV establishes a terminal infection that can lead to a severe neurological illness, ending in death.

Source:

 Institute of Microbiology and Hygiene

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Transforming Cancer Care: Aventa Genomics and the Future of Genomic Testing