Study opens door for development of tools to modulate CoQ10 synthesis in human cells

NewsGuard 100/100 Score

A study which counts with the participation of University of Granada scientists has provided new data on the Q10 coenzyme (CoQ10), a molecule which is synthesized within the cells of the organism itself and which has essential functions for cellular metabolism. This study opens the door for the development, in the not too distant future, of tools to modulate the synthesis of CoQ10 in human cells according to their metabolic needs. This will be particularly important for the treatment of diseases caused by primary and secondary deficiencies in CoQ10.

Its role in the production of energy required by the cell and its antioxidant capacity are among the best known functions of this coenzyme. Human cases have been described in which the deficiency in CoQ10 can be attributed to defects in the biosynthetic pathway, which causes a syndrome with a very heterogeneous clinical picture.

CoQ10 deficiency is a rare mitochondrial disease which affects mostly children. The details of this biosynthetic pathway are not known in their totality, since there are steps whose catalysing enzymes remain unknown, or proteins in the pathway whose specific function is either unknown or has not yet been fully demonstrated.

One of those proteins is Coq9, which the UGR research group demonstrated in 2013 is an essential protein in the biosynthesis of CoQ, and which specifically regulates the Coq7 protein, an enzyme with a hydroxylase activity that catalyses one of the intermediate steps for the synthesis of CoQ10.

This study is now led by Dr. David J. Pagliarini (U. of Wisconsin-Madison) in collaboration with Dr Liang Tong's team (Columbia U.) and the U. of Granada researchers Marta Luna Sánchez and Luis Carlos López García. It has been recently published in the journal PNAS. This research conclusively proves that protein CoQ9 regulates enzyme CoQ7.

Through the crystallization of the human protein and experiments conducted on mice, the study proves that Coq9 has a lipid-binding structure, which would give it the capacity to provide enzyme Coq7 with the intermediary metabolite that it uses as a substrate in the reaction it catalyses. The results of the study suggest, besides, that the biosynthetic machinery of CoQ10 is organized as a multiprotein complex in mammals, with the purpose of increasing the efficiency of its synthesis and enable its regulation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals key protein's role in balancing immune response to viral infections