New type of fat-producing cells may speed up treatments for muscular dystrophy and fibrosis

NewsGuard 100/100 Score

A team of University of British Columbia researchers has identified fat-producing cells that possess "dual-personalities" and may further the development of treatments for muscle diseases such as muscular dystrophy and fibrosis.

The team found a new type of fibro/adipogenic progenitors, or FAPs, that generate fatty fibrous tissues when transplanted into damaged muscles in mice. Progenitors are similar to stem cells in their capacity to differentiate, but are limited in the number of times they can divide.

The findings are published in the current issue of Nature Cell Biology.

"These cells are typically dormant in muscle tissues," says lead author Fabio Rossi, Canada Research Chair in Regenerative Medicine. "Once activated by damage, they produce signals that coordinate tissue regeneration and then disappear. That's the Dr. Jekyll side of FAPs.

"In chronic muscle diseases such as muscular dystrophy, however, FAPs persist and may be contributing to over-production of scar tissues, resulting in fibrosis. That's the Mr. Hyde side," says Rossi, associate professor in the Department of Medical Genetics and the Biomedical Research Centre.

Better understanding of the role of FAPs could help encourage their healthy function or repress their negative impact, the researchers say. In the long term, drugs targeting these cells may be useful in a range of diseases characterized by fibrosis ranging from cardiovascular to lung and kidney disease, to organ transplantation. In addition, the cells' ability to generate new fat tissue could be exploited to target metabolic disease.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Vaccines targeting chronic diseases show promise in combatting age-related conditions