Annelie Wendeberg presents protocol for identification of environmental microbes

NewsGuard 100/100 Score

Metagenomics, the study of DNA isolated from samples of naturally occurring microbial populations, is rapidly growing. Improvements to cloning and sequencing techniques are allowing researchers to study microorganisms in environmental samples, and new knowledge of species interactions and community dynamics is emerging. The identification of microorganisms in these samples is of vital importance to interpreting the results of such studies. In the January issue of Cold Spring Harbor Protocols (http://www.cshprotocols.org/TOCs/toc1_10.dtl), Annelie Wendeberg of the Helmholtz Centre for Environmental Research (http://www.ufz.de/index.php?en=13987) presents a protocol for "Fluorescence In Situ Hybridization for the Identification of Environmental Microbes." The methods described allow the phylogenetic identification of microorganisms in environmental samples (e.g., water and sediments) by means of fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes followed by signal amplification with catalyzed reporter deposition (CARD). As one of January's featured articles, it is freely available on the journal's website (http://cshprotocols.cshlp.org/cgi/content/full/2010/1/pdb.prot5366).

The enzyme-linked immunospot (ELISPOT) assay is considered by many to be the gold standard for monitoring cellular immune responses. The method is highly sensitive, quantitative, easy to use, and amenable to high-throughput screening. Until recently, the ELISPOT assay has been limited to the characterization of only one effector molecule. Since the maintenance of both IFN- and IL-2 by pathogen-specific T cells has been linked to a more favorable clinical outcome in human immunodeficiency virus (HIV) and Leishmania infections, an ELISPOT assay able to characterize both of these effector molecules would be helpful for monitoring immune responses to certain infectious agents. Nicole Bernard and colleagues from the McGill University Health Centre (http://www.mcgill.ca/hostres/investigators/bernard/) present a protocol for Dual-Color ELISPOT Assay for the Simultaneous Detection of IL-2 and/or IFN- Secreting T Cells in the January issue of Cold Spring Harbor Protocols (http://www.cshprotocols.org/TOCs/toc1_10.dtl). As interest in multifunctional T-cell monitoring in human diseases grows, this method is likely to be extensively used.

Source: Cold Spring Harbor Laboratory

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of DNA repair mechanism advances understanding of how human cells stay healthy