Space travel can affect intestinal function of astronauts

NewsGuard 100/100 Score

Bacteria, fungi, and viruses can enter our gut through the food we eat. Fortunately, the epithelial cells that line our intestines serve as a robust barrier to prevent these microorganisms from invading the rest of our bodies.

A research team led by a biomedical scientist at the University of California, Riverside, has found that simulated microgravity, such as that encountered in spaceflight, disrupts the functioning of the epithelial barrier even after removal from the microgravity environment.

"Our findings have implications for our understanding of the effects of space travel on intestinal function of astronauts in space, as well as their capability to withstand the effects of agents that compromise intestinal epithelial barrier function following their return to Earth," said Declan McCole, a professor of biomedical sciences at the UC Riverside School of Medicine, who led the study published today in Scientific Reports.

The microgravity environment encountered in space has profound effects on human physiology, leading to clinical symptoms and illnesses including gastroenteritis; previous studies have shown microgravity weakens the human immune system. Microgravity has also been shown to increase the intestinal disease-causing ability of food-borne bacteria such as salmonella.

Our study shows for the first time that a microgravity environment makes epithelial cells less able to resist the effects of an agent that weakens the barrier properties of these cells. Importantly, we observed that this defect was retained up to 14 days after removal from the microgravity environment."

Declan McCole, professor of biomedical sciences at UC Riverside School of Medicine

The permeability-inducing agent McCole's team chose to investigate was acetaldehyde, an alcohol metabolite. McCole explained alcohol compromises barrier function and increases gastrointestinal permeability in normal subjects and in patients with alcoholic liver disease.

The barrier function of the intestinal epithelium, he added, is critical for maintaining a healthy intestine; when disrupted, it can lead to increased permeability or leakiness. This, in turn, can greatly increase the risk of infections and chronic inflammatory conditions such as inflammatory bowel disease, celiac disease, Type 1 diabetes, and liver disease.

McCole's team used a rotating wall vessel -- a bioreactor that maintains cells in a controlled rotation environment that simulates near weightlessness -- to examine the impact of simulated microgravity on cultured intestinal epithelial cells.

Following culture for 18 days in the vessel, the team discovered intestinal epithelial cells showed delayed formation of "tight junctions," which are junctions that connect individual epithelial cells and are necessary for maintaining impermeability. The rotating wall vessel also produces an altered pattern of tight junction assembly that is retained up to 14 days after the intestinal epithelial cells were removed from the vessel.

"Our study is the first to investigate if functional changes to epithelial cell barrier properties are sustained over time following removal from a simulated microgravity environment," McCole said. "Our work can inform long-term space travel and colonization where exposure to a food-borne pathogen may result in a more severe pathology than on Earth."

Source:
Journal reference:

Alvarez, R., et al. (2019) A Simulated Microgravity Environment Causes a Sustained Defect in Epithelial Barrier Function. Scientific Reports. doi.org/s41598-019-53862-3.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Raw meat-based diet for pets linked to drug-resistant bacteria, prompting concerns over public health risks