Pitt scientists open door to potential research into cures for Parkinson's disease

Published on October 1, 2013 at 8:20 AM · No Comments

A mix of serendipity and dogged laboratory work allowed a diverse team of University of Pittsburgh scientists to report in the Oct. 1 issue of Nature Cell Biology that they had solved the mystery of a basic biological function essential to cellular health.

By discovering a mechanism by which mitochondria - tiny structures inside cells often described as "power plants" - signal that they are damaged and need to be eliminated, the Pitt team has opened the door to potential research into cures for disorders such as Parkinson's disease that are believed to be caused by dysfunctional mitochondria in neurons.

"It's a survival process. Cells activate to get rid of bad mitochondria and consolidate good mitochondria. If this process succeeds, then the good ones can proliferate and the cells thrive," said Valerian Kagan, Ph.D., D.Sc., a senior author on the paper and professor and vice chair of the Pitt Graduate School of Public Health's Department of Environmental and Occupational Health. "It's a beautiful, efficient mechanism that we will seek to target and model in developing new drugs and treatments."

Dr. Kagan, who, as a recipient of a Fulbright Scholar grant, currently is serving as visiting research chair in science and the environment at McMaster University in Ontario, Canada, likened the process to cooking a Thanksgiving turkey.

"You put the turkey in the oven and the outside becomes golden, but you can't just look at it to know it's ready. So you put a thermometer in, and when it pops up, you know you can eat it," he said. "Mitochondria give out a similar 'eat me' signal to cells when they are done functioning properly."

Cardiolipins, named because they were first found in heart tissue, are a component on the inner membrane of mitochondria. When a mitochondrion is damaged, the cardiolipins move from its inner membrane to its outer membrane, where they encourage the cell to destroy the entire mitochondrion.

However, that is only part of the process, says Charleen T. Chu, M.D., Ph.D., professor and the A. Julio Martinez Chair in Neuropathology in the Pitt School of Medicine's Department of Pathology, another senior author of the study. "It's not just the turkey timer going off; it's a question of who's holding the hot mitt to bring it to the dining room?" That turns out to be a protein called LC3. One part of LC3 binds to cardiolipin, and LC3 causes a specialized structure to form around the mitochondrion to carry it to the digestive centers of the cell.

The research arose nearly a decade ago when Dr. Kagan had a conversation with Dr. Chu at a research conference. Dr. Chu, who studies autophagy, or "self-eating," in Parkinson's disease, was seeking a change on the mitochondrial surface that could signal to LC3 to bring in the damaged organelle for recycling. It turned out they were working on different sides of the same puzzle.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post