For measurements of very low mobilities, the NanoBrook ZetaPALS is the answer. The only answer! With concepts developed at Bristol University and Brookhaven Instruments, the NanoBrook ZetaPALS determines zeta potential using Phase Analysis Light Scattering: A technique that is up to 1,000 times more sensitive than traditional light scattering methods based on the shifted frequency spectrum.

Electrostatic repulsion of colloidal particles is often the key to understanding the stability of any dispersion. A simple, easy measurement of the electrophoretic mobility "even in nonpolar liquids" yields valuable information. Measurements made in water and other polar liquids are easy and fast with the NanoBrook ZetaPlus. Such measurements cover the range of typically ± (6 to 100) mV, corresponding to mobilities of ± 0.5-8x10-8 m2 /V·s. The NanoBrook ZetaPALS covers this full range, of course, and extends it by a factor of 1000 in sensitivity!

Principles of Operation

The NanoBrook ZetaPALS utilizes phase analysis light scattering to determine the electrophoretic mobility of charged, colloidal suspensions. Unlike its cousin, Laser Doppler Velocimetry (LDV) (sometimes called Laser Doppler Electrophoresis (LDE)), the PALS technique does not require the application of large fields which may result in thermal problems or denaturation. This is due to the fact that the measurement analyzes the phase shift. The particles need only to move a fraction of their own diameter to yield good results. In salt concentrations up to 2 molar and with electric fields as small as 1 or 2 V/cm enough movement is induced to get excellent results. In addition, the Autotracking feature compensates for thermal drift.

Features

  • Zeta potential for the difficult cases
  • For proteins, peptides, mAb, RNA, and other biological samples
  • For zeta potential in organic solvents
  • For oily or viscous media
  • For high-salt suspensions
  • For samples near the I.E.P.
  • 1,000 times more sensitive than other techniques
  • Disposable cuvettes, no contamination or alignment
  • Built in automatic procedures and parameters (SOP)
  • Easy to use

Applications

  • Liposomes and biocolloids
  • Proteins, IgG, peptides, RNA/DNA
  • Ceramics and refactories
  • Pigments and inks
  • Pharamceuticals
  • Emulsions (foodstuffs, cosmetics)
  • Wastewater treatment monitoring
  • Latexes
  • Carbon blacks

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.