Scientists find new mechanism by which brain cells can be damaged during chronic neurodegenerative diseases

Published on November 7, 2005 at 4:30 AM · No Comments

Scientists at the University of Rochester Medical Center have targeted a new culprit and method of attack on neurologic functions in diseases such as Alzheimer's and dementia associated with HIV.

In an article in the Nov. 1 issue of The Journal of Clinical Investigation, the Rochester scientists describe a new mechanism by which brain cells can be damaged during chronic neurodegenerative diseases. When inflammation occurs in the brain, nerve impulses that are passed between cells during routine activities like learning and memory can become toxic. Instead of triggering the formation of memories, these impulses can inflict injury on neurons and disrupt neurologic function.

Understanding this mechanism could provide a new path for drugs to treat the diseases. Working in collaboration with researchers at the University of California at San Diego, the Rochester scientists propose a strategy of chemical preconditioning to induce adaptations in nerve cells that would enable the cells to better withstand toxic attacks, prevent injury, and preserve function.

"Preconditioning would allow the nervous system to experience stress and become more resistant to future encounters with stress and the damage it can trigger," said Harris A. Gelbard, M.D., professor of Neurology at the University of Rochester Medical Center and the research project's principal investigator.

A long-standing villain in neurodegenerative disease has been glutamate, an amino acid that normally acts as a neurotransmitter. Excess glutamate, however, can overly excite neurons, causing damage and death - a process called excitotoxicity. Some drugs developed for the treatment of Alzheimer's disease, for example, are designed to lower the production of glutamate or block its transmission to reduce excitotoxic injury.

"But just blocking glutamate doesn't seem to work efficiently in neurodegenerative diseases with inflammation," said Gelbard. "We reconsidered how excitotoxicity actually damages the nervous system in a functional way."

The scientists focused on dendrites, the crooked branches of neurons that carry impulses toward the body of the nerve cell, and synapses, the places where impulses pass from neuron to neuron. Injury to dendrites - characterized by swelling or beading, loss of dendrite spines, and reduction in size - is seen in HIV-1-associated dementia and Alzheimer's.

In laboratory studies, brain cells and slices were exposed to platelet-activating factor, or PAF, a compound that promotes inflammation and plays many roles in the brain. It can be produced by neurons and takes part in the working of synapses, including activity associated with learning and remembering. It also is produced by immune cells during inflammation. The amount of PAF in the brain increases dramatically in HIV-1-associated dementia and other neurodegenerative diseases.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Dansk | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post