Analysis of Expired VOCs

Table of Contents

Introduction
Experimental Setup
Results
Conclusion

Introduction

The Breath Analysis of Expired VOCs during Exercise markers in human breath for the determination of physiological events such as lactate threshold and oxidative stress remains a challenge for conventional ‘off-line’ gas analysis equipment, such as GCMS. The analysis of these types of samples often requires a rapid response, coupled with a wide dynamic range. The monitoring of breath VOCs has the potential to be an effective non-invasive tool for the real-time investigation of various physiological events.

HPR-20 TMS

The HPR-20 TMS Transient MS is ideal for this type of application as a result of its fast response, wide dynamic range and high sensitivity that is offered by the PIC detector. This equipment allows for the measurement of compounds to be conducted ‘breath-by-breath’, which is a significant improvement as compared to traditional ‘off-line’ techniques. Additional dynamic factors of this instrument, such as changes in breathing rate and end-tidal, could also be deduced.

Experimental Setup

The HPR-20 TMS was connected to a proprietary breathing mask through a customized adaptor that was optimized for high-speed analysis. Test subjects of varying ages and fitness levels performed a maximal exercise test on a stationary bicycle as their breath was monitored in real-time. The exercise test involved of a common physiological test known as a ‘ramp test’, which aims to ensure that the subject is exercising at their aerobic capacity.

Results

The data obtained from the aforementioned experiments allowed the real-time tracking of multiple compounds that are produced in varying amounts during both aerobic and anaerobic respiration. The time resolution of 20 ms per data point allowed for the monitoring of the concentration of compounds present in each breath. Inflections were also visualized as data at points that could be related to physiological changes in the subject, such as the individual’s lactate threshold. Monitoring any changes in VOC compounds during physiological events is novel technique that has not been previously established.

Figure 2. Example data showing the real-time analysis of multiple compounds exhaled in human breath during an exercise test

Conclusion

The Hiden HPR-20 TMS has demonstrated its ability to be an ideal product for its high speed and high sensitivity analysis of various types of compounds present in human breath. The excellent response time and dynamic range offered by the HPR-20 allow the concentration changes of multiple compounds to be measured in real time. The real time analysis of the exhaled breath of various species is a novel research tool that can be useful for a wide variety of scientific studies in the future.

This information has been sourced, reviewed and adapted from materials provided by Hiden Analytical.

For more information on this source, please visit Hiden Analytical.

Last updated: May 16, 2018 at 5:47 AM

Other White Papers by this Supplier