Energy-efficient LED devices use UV light to kill pathogens

NewsGuard 100/100 Score

Research from North Carolina State University will allow the development of energy-efficient LED devices that use ultraviolet (UV) light to kill pathogens such as bacteria and viruses. The technology has a wide array of applications ranging from drinking-water treatment to sterilizing surgical tools.

"UV treatment utilizing LEDs would be more cost-effective, energy efficient and longer lasting," says Dr. Ram-n Collazo, an assistant professor of materials science and engineering at NC State and lead author of a paper describing the research. "Our work would also allow for the development of robust and portable water-treatment technologies for use in developing countries."

LEDs utilize aluminum nitride (AlN) as a semiconductor, because the material can handle a lot of power and create light in a wide spectrum of colors, particularly in the UV range. However, technologies that use AlN LEDs to create UV light have been severely limited because the substrates that served as the foundation for these semiconductors absorbed wavelengths of UV light that are crucial to applications in sterilization and water treatment technologies.

A team of researchers from North Carolina and Japan has developed a solution to the problem. Using computer simulation, they determined that trace carbon atoms in the crystalline structure of the AlN substrate were responsible for absorbing most of the relevant UV light. By eliminating the carbon in the substrate, the team was able to significantly improve the amount of UV light that can pass through the substrate at the desired wavelengths.

"Once we identified the problem, it was relatively easy and inexpensive to address," says Dr. Zlatko Sitar, Kobe Steel Distinguished Professor of Materials Science and Engineering at NC State and co-author of the paper.

Commercial technologies incorporating this research are currently being developed by HexaTech Inc., a spin-off company from NC State.

"This is a problem that's been around for more than 30 years, and we were able to solve it by integrating advanced computation, materials synthesis and characterization," says Dr. Doug Irving, assistant professor of materials science and engineering at NC State and co-author of the paper. "I think we'll see more work in this vein as the Materials Genome Initiative moves forward, and that this approach will accelerate the development of new materials and related technologies."

The paper, "On the origin of the 265 nm absorption band in AlN bulk crystals," is published online in Applied Physics Letters

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Increased emotional sensitivity linked to previous COVID-19 infection, new research suggests