Cleveland-based startup will use federal grant to develop AI tools for TB detection

Cleveland--Diascopic LLC, a Cleveland-based medical research company that develops diagnostic technology, will use a highly competitive federal grant to develop and apply new artificial intelligence (AI) and digital pathology tools for detecting tuberculosis (TB).

Company principals Cary Serif, chief executive officer, and Jim Uhlir, vice president of research and engineering, are focused on rapid, mobile, low-cost and accurate digital pathology solutions for pressing health problems.

According to the Word Health Organization, an estimated 1.8 billion people--that's almost one quarter of the world's population--are currently infected with the bacterium that causes TB. It is found in every country in the world, and is the leading infectious cause of death worldwide. In 2018, according to the TB Alliance, 10 million individuals fell ill from TB, and 1.6 million died.

In its effort to combat this global pandemic, Diascopic has conducted preliminary studies of its diagnostic technology in five African clinical locations where TB is prevalent. Preliminary results were promising enough to secure $225,000 in Small Business Innovation Research (SBIR) funding from the National Institute of Health's National Institute for Biomedical Imaging and Bioengineering.

Serif and Anant Madabhushi, professor of biomedical engineering at Case Western Reserve University, are co-principal investigators on the grant.

Madabhushi, also director of the university's Center for Computational Imaging and Personalized Diagnostics, brings his image-analysis expertise to augment the Diascopic platform by applying AI to help classify TB bacterium within the images.

Diascopic combines low-magnification, high-resolution imaging with digital-analysis software for a portable, simple and flexible digital diagnostic platform that allows for immediate inspection of microscopic specimens.

Unlike traditional methods for TB diagnosis--which require highly trained technicians, laboratory equipment and several hours to several days--Diascopic's iON platform detects the TB bacterium digitally in less than 60 seconds from a single sample.

By digitizing the process, we're able to reuse the image in perpetuity, which makes the test highly repeatable. Just as importantly, the digitization allows us to build a massive reference library to which we can apply artificial intelligence and data analytics to continue improving the test's accuracy."

Cary Serif, chief executive officer, Diascopic LLC

Health care specialists need a faster, more reliable disease detection process that functions as well in the lab as it does for mobile applications. In addition, a new level of automation can provide economic operating efficiencies.

Diascopic is working with the Uganda Case Research Collaboration (UCRC), a collaborator on the SBIR grant, to collect 400 specimens, from which Diascopic will generate roughly 60,000 digital images.

The highly competitive federal SBIR program encourages domestic small businesses to engage in research and development with potential for commercialization.

From 2011 through 2014, Uhlir and Serif performed studies in four clinics across South Africa, Namibia and Uganda to train the software platform. From those studies, the accuracy rate for detection rose from 75% to 95%.

"The intention," Uhlir said, "is to raise the bar, compared to other diagnostic tests, to reduce the cost and technical skill needed to administer the test, while also increasing the speed of diagnosis."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
You might also like... ×
Using AI and big data to predict the future spread of COVID-19 cases