New technologies for early clinical diagnosis of human prion diseases

NewsGuard 100/100 Score

Early and accurate diagnosis of human prion diseases is a long-standing difficulty. Currently, the definitive diagnosis of human prion diseases relies on pathognomonic histological features or PrPSc detection of patients' brain tissue biopsy or autopsy samples, which is not feasible in most cases.

Therefore, clinical diagnosis mainly relies on the combinations of the patient's clinical symptoms. MRI and EEG are used to check for brain damage and detect surrogate markers such as the 14-3-3 protein in Cerebrospinal fluid (CSF), but this is often challenging.

In recent years, the development of in vitro cell-free conversion techniques, such as technologies protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC), have extensively promoted the diagnosis of human prion diseases. PMCA has high diagnostic accuracy in the blood, CSF, and urine samples of variant Creutzfeldt-Jakob Disease (vCJD) patients. Again, RT-QuIC has high diagnostic accuracy for cerebrospinal fluid, olfactory mucosa, and skin samples of sporadic Creutzfeldt Jakob Disease (sCJD) patients. Applying these two technologies is of great significance to the early clinical diagnosis of human prion diseases and the reduction of blood-borne and iatrogenic transmission of prion.


  • Analysis of research shows PMCA has high diagnostic accuracy in vCJD patients.
  • Analysis of research shows RT-QuIC has high diagnostic accuracy in sCJD patients.
  • Reports suggest PMCA and RT-QuIC have significance in diagnosis of prion diseases.
Journal reference:

Wu, J., et al. (2021) Protein amplification technology: New advances in human prion disease diagnosis. Biosafety and Health.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Innovative approach to disrupt misfolding of tau proteins in neurodegenerative diseases