Paclitaxel Production

NewsGuard 100/100 Score

Throughout the development of paclitaxel, which is one of the most successful anticancer drugs of the past 50 years, adequate supply has remained a major challenge. This drug has been very complex to synthesize economically from first principles and cumbersome to isolate from natural sources. In addition, paclitaxel represents only a minor proportion of the total taxoid content of the Taxus species.

Image Credit: nudelman /

The first commercial company to accomplish large-scale production of paclitaxel was Polysciences, Inc. Clinical trials were possible when a methodology was derived to extract a precursor of this drug, 10-deacetyl-baccatin III, from the common evergreen yew tree Taxus baccata, which is often found in people's gardens. By chemical synthesis procedures, the precursor was subsequently converted to paclitaxel.

Methods of paclitaxel production

Since the discovery of paclitaxel, a sustainable increase of its extraction was the principal goal of the pharmaceutical industry. A serious obstacle is the aforementioned low proportion of paclitaxel, even in the most productive species, Taxus brevifolia (0.001-0.05%). Consequently, the treatment of one cancer patient consumes approximately eight 60-year old yew trees.

A similar situation arises with other Taxus species as well, such as Taxus chinensis. According to the report from CEC China Pharmaceuticals Ltd., 10 thousand kilograms (kg) of leaves and bark from this species are required to isolate 1 kg of paclitaxel.

Advanced and often expensive technologies and complex purification techniques are needed for such extractions, which is the reason why ecological harvesting protocols are being developed. Atlantic Forestry Centre, for example, converts elite cultivars of the wild species into a commercially usable crop. In 2004, the company Yewcare began to plant Taxus chinensis in the Chinese provence of Yunan, currently covering more than 30 km2 in monoculture.

The chemical synthesis of paclitaxel was first achieved by Holton and Nicolau in 1994; however, the low yield limit combined with the complexity of its biosynthesis hampered its applicability. An alternative approach is producing paclitaxel by semisynthesis through the use of intermediates from the needles of the European yew.

Plant cell cultures represent an alternative and environmentally sustainable source of paclitaxel. Some advantages of this method include the growth of the material that is independent of its original location, thus preventing these materials from being subject to seasonality or weather. The selection of cell lines, along with the addition of precursors or optimization of culture conditions are strategies that have been shown to increase paclitaxel yield in plant cultures. At the moment, Python Biotech is the largest producer of paclitaxel by this method.

In 1993, an endophytic taxol-producing fungus was found in Taxus; however, fungal fermentation was shown to give low yields of paclitaxel. Nevertheless, Cytoclonal Pharmaceutis, Inc. patented the process and, in 2001, signed a contract with Bristol-Myers Squibb for the development of new methodology based on microbial fermentation for paclitaxel and other new taxane therapeutics.

Demand, profits, and future approaches

At the end of last century, worldwide sales for paclitaxel produced by Bristol-Myer Squibb climbed up to 1.5 billion dollars. It should be noted, however, that there has been a decrease in sales in recent years, which is mainly due to patent expiration and increased generic production of the drug in both Europe and Japan. The total market for paclitaxel remains well above 1 billion per year with continued expansion.

Suprageneric versions of paclitaxel were developed, such as nanoparticle albumin-bound paclitaxel (Abraxis Oncology's Abraxane) and polyglutamate paclitaxel (Cell Therapeutics' Xyotax). Their advantages are in terms of drug delivery and a lower number of side-effects. Their sale growth remains steady, reflecting a growing market for paclitaxel and other derivatives of Taxus species.

In order to improve the yield of paclitaxel and other taxanes in cell cultures, efforts have been focused on assaying the biosynthetic activities of cultured cells. Some of the approaches include screening of high yielding cell lines, optimization of cultural conditions and production media, induction of secondary metabolite pathways, and the use of a two-phase culture system. Future perspectives should be concentrated on the simultaneous use of empirical and rational approaches.


Further Reading

Last Updated: Apr 22, 2021

Dr. Tomislav Meštrović

Written by

Dr. Tomislav Meštrović

Dr. Tomislav Meštrović is a medical doctor (MD) with a Ph.D. in biomedical and health sciences, specialist in the field of clinical microbiology, and an Assistant Professor at Croatia's youngest university - University North. In addition to his interest in clinical, research and lecturing activities, his immense passion for medical writing and scientific communication goes back to his student days. He enjoys contributing back to the community. In his spare time, Tomislav is a movie buff and an avid traveler.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Meštrović, Tomislav. (2021, April 22). Paclitaxel Production. News-Medical. Retrieved on May 18, 2024 from

  • MLA

    Meštrović, Tomislav. "Paclitaxel Production". News-Medical. 18 May 2024. <>.

  • Chicago

    Meštrović, Tomislav. "Paclitaxel Production". News-Medical. (accessed May 18, 2024).

  • Harvard

    Meštrović, Tomislav. 2021. Paclitaxel Production. News-Medical, viewed 18 May 2024,


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.