Valproic Acid Pharmacology

NewsGuard 100/100 Score

Valproic acid dissociates to form valproate ions in the body, which has numerous effects on the neuronal tissue in the brain. This accounts for its broad clinical activity and uses in several different types of seizure types and other health conditions.

For this reason, there is no single mechanism of action that is accepted to encompass the wide utility of this drug. Instead, it is believed that there are several neurophysiological mechanisms involved in the pharmacological action of valproate, explaining why its use can be beneficial for various types of seizures that are characterized by unique molecular events.

Image Credit: Irina Anosova / Shutterstock
3d rendering of a valproic acid molecule. Image Credit: Irina Anosova / Shutterstock

Increase Gamma-aminobutyric Acid (GABA)

Gamma-aminobutyric acid (GABA) is an important neurotransmitter that is widely accepted to play a significant role in the specific region of the brain related to the generation and propagation of seizures.

It is believed that valproic acid has an effect on the production of GABA, which leads to increased levels of the neurotransmitter in the brain and, consequently, serves to prevent the occurrence of seizures. In addition to this, valproate is also thought to enhance the effect of GABA that already exists in the area on the receptors. Alternatively, medical research has also suggested that valproate mimics the action of GABA, thus decreasing the risk of having a seizure.

Valproate has been suggested to mediate the neuronal excitation of N-methyl-D-aspartate (NMDA) glutamate receptors, which is also likely to contribute to its anticonvulsant effect.

Inhibition of Sodium and Calcium Channels

Voltage-gated sodium and calcium channels are also thought to play a pivotal role in the way valproic acid works. Although the exact method has not been clearly established, observation studies have suggested that these channels in the brain are likely to have an impact on the prevalence of some seizure types, particularly absence seizures.

Further study is required in this area to determine how valproate affects the functionality of sodium and calcium channels, and the subsequent effect on epileptic seizures.

Pharmacokinetics

The pharmacokinetics of valproic acid is important to understand how it is utilized in the body and the extent of the effect it can exert.

The pharmaceutically active component of the medication is absorbed well into the bloodstream with a bioavailability of 81-89%. This means the majority of the drug is absorbed, which happens on a relatively quick timeframe with the peak plasma concentration for standard release medications at approximately 2 hours after administration. For this reason, sodium valproate is also available as an extended release formulation to allow for a more gradual absorption and more convenient dosing once per day. Valproic acid is highly bound to protein in the blood, which accounts for its volume of distribution value of 92L.

Approximately 30-50% of the original active ingredient is excreted in the urine, and the remaining majority is first metabolized. The liver plays an essential role in the metabolism of valproic acid, with the involvement of the CYP2C9 enzyme in this process. 2-propyl-3-ketopentanoic acid is a metabolite that may result from valproic acid undergoing reactions in the liver. Overall, the clearance of the drug ranges from 7 – 16 hours, depending on the age and individual characteristics of the patient.

References

Further Reading

Last Updated: Dec 22, 2022

Yolanda Smith

Written by

Yolanda Smith

Yolanda graduated with a Bachelor of Pharmacy at the University of South Australia and has experience working in both Australia and Italy. She is passionate about how medicine, diet and lifestyle affect our health and enjoys helping people understand this. In her spare time she loves to explore the world and learn about new cultures and languages.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Smith, Yolanda. (2022, December 22). Valproic Acid Pharmacology. News-Medical. Retrieved on April 24, 2024 from https://www.news-medical.net/health/Valproic-Acid-Pharmacology.aspx.

  • MLA

    Smith, Yolanda. "Valproic Acid Pharmacology". News-Medical. 24 April 2024. <https://www.news-medical.net/health/Valproic-Acid-Pharmacology.aspx>.

  • Chicago

    Smith, Yolanda. "Valproic Acid Pharmacology". News-Medical. https://www.news-medical.net/health/Valproic-Acid-Pharmacology.aspx. (accessed April 24, 2024).

  • Harvard

    Smith, Yolanda. 2022. Valproic Acid Pharmacology. News-Medical, viewed 24 April 2024, https://www.news-medical.net/health/Valproic-Acid-Pharmacology.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.