S. pneumoniae interacts with other nasopharyngeal bacteria

NewsGuard 100/100 Score

By Joanna Lyford, Senior medwireNews Reporter

Streptococcus pneumoniae bacteria are able to detect and respond to other bacterial species in the same host niche, researchers report in Open Biology.

This ability may help the bacteria to adapt to their environment, say the researchers who suggest that communication among bacterial species could potentially be harnessed for therapeutic intervention.

Noting that S. pneumoniae usually colonises the human nasopharynx harmlessly, and that this niche is simultaneously populated by other bacterial species, Lucy Hathaway (University of Bern, Switzerland) and colleagues looked for a role and pathway of interspecies communication.

They developed mutant strains of pneumococcal isolates that had inactive versions of aliB-like ORF 1 and/or aliB-like ORF 2, genes that are found only in non-encapsulated strains of the bacteria and encode substrate-binding proteins. Non-encapsulated S. pneumoniae accounts for 10% to 15% of strains isolated from the human nasopharynx, they explain.

By culturing the mutant strains with nasopharyngeal washings containing many other bacterial strains, the team identified ligands of the two proteins.

AliB-like ORF 1 had just one ligand, a sequence that matches a ribosomal subunit protein of Enterobacteriaceae, including Salmonella enterica, E. coli, Serratia symbiotica and Klebsiella pneumoniae. This protein is thought to facilitate competence for genetic transformation.

Meanwhile, AliB-like ORF 2 had two peptide ligands that matched subunit proteins of the human commensal Prevotella salivae and P. tannerae strains, which are common in healthy human nasopharyngeal microbiota.

Further analysis revealed ligand binding to be highly specific and, in the case of AliB-like ORF 2, to promote bacterial colonisation in vivo. In a mouse model of S. pneumoniae infection, bacterial colonisation 24 to 48 hours after inoculation was significantly lower with mutant strains lacking AliB-like ORF 1 and 2 than with wild-type strains.

The researchers conclude that S. pneumoniae is able to recognise and respond to peptides matching other bacterial species.

“We therefore propose that sensing of short peptides is a newly described mechanism which could be employed by bacteria to sense neighbouring species in the microbiota and adapt accordingly”, they write. “Manipulation of this communication could be a new target in the control of bacterial colonization and infections.”

Licensed from medwireNews with permission from Springer Healthcare Ltd. ©Springer Healthcare Ltd. All rights reserved. Neither of these parties endorse or recommend any commercial products, services, or equipment.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gut bacteria play a pivotal role in obesity's impact on body fat metabolism