Study: Small RNA chains could regulate the genes involved in salmonella's virulence

NewsGuard 100/100 Score

A series of small RNA fragments are the regulator factors involved in a new control mechanism for salmonella virulence, a pathogenic bacterium which causes bacterial gastroenteritis with a high incidence -more than 100,000 cases per year- in Europe.

The findings of the new regulating mechanism, published in the journal PLOS Genetics, are led by Carlos Balsalobre, lecturer at the Faculty of Biology of the University of Barcelona, and it means a step forward in the development of new therapeutic strategies to treat infections in the food chain.

According to the study, these small RNA chains could regulate the genic expression of the involved genes in a key process in salmonella's ability to cause an infection. Other participants of the study are the UB experts Youssef El Mouali, Tania Gaviria Cantín and Marta Gilabert, as well as María Antonia Sánchez-Romero (University of Seville), and Alexander J. Westermann and Jörg Vogel (University of Würzburg, Germany).

Salmonella enterica is one of the main enteric pathogens in developed countries and underdevelopment areas as well. In fact, salmonella is present in domestic and wild animals, and can cross the whole food chain. Regarding humans, most of the cases of salmonella have their origins in the consumption of foods with natural origin that are already infected by the bacterium, and can cause light gastroenteritis and more general severe infections.

During the infection process, S. enterica invades the epithelial cells, a determining process to unchain the bacterial infection, which requires the coordinated expression of a series of genes. According to Carlos Balsalobre, lecturer at the Department of Genetics, Microbiology and Statistics of the UB, "once the we eat the food that is already affected by salmonella, the bacterium gets to the intestine, where it is able to invade epithelial cells, a determining process to unchain the bacterial infection".

Objective: genes from the Salmonella pathogenicity island

Most of the coded genes by involved factors in the invasion of epithelial cells -and determining for the virulent capacity of the bacterium- are grouped in a chromosomal region known as the Salmonella pathogenicity island (SPI-1). For decades, great part of the scientific research has focused on the description of mechanisms that activate the expression of the genes in SPI-1 during the bacterial infectious process.

"However, in this study we focused on the opposite case", adds Balsalobre. "That is, we studied the important factors to keep these genes silent when the bacterium does not need to invade the guest's epithelial cells".

The new study reveals that the CRP-AMPc metabolic sensor is involved in the control of the expression of the genes in the SPI-1. This control occurs at a post-transcriptional level and indirectly, through the regulation of the expression of a small RNA fragment (Spot 42). The mechanism of the regulation, described now for the first time, takes place through the interaction of the small RNA fragments with the terminal region of the corresponding RNA messenger (in particular, with 3'UTR).

This study, a new step towards the knowledge of control mechanisms in bacteria to regulate the genic expression, will contribute to design new therapeutic tools to work on one of the microorganisms that shows a higher resistance to the use of antimicrobials.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study highlights how age affects nasal cell response to SARS-CoV-2