LMU immunologists reveal how Roquin-1 controls the activity of immune cells

NewsGuard 100/100 Score

LMU immunologists have discovered how mutations in Roquin-1 trigger autoimmunity, but can also improve the body's fight against cancer cells.

With autoimmune diseases such as lupus erythematosus, severe inflammation occurs in different areas of the organism. The immune system mistakenly identifies the body's own structures as foreign and attacks them. Such disorders have various triggers, and only a handful of known mutations in individual genes lead to autoimmunity. These include the gene that codes for Roquin-1. The so-called sanroque mutation induces a lupus-like syndrome in mice.

Such mutations teach us how our body protects itself against autoaggressive reactions of the immune system."

Professor Vigo Heissmeyer, Researcher, Institute for Immunology at LMU, Molecular Immune Regulation Research Unit at Helmholtz Zentrum München

By means of functional investigations and mouse models, he and his team have now shown how the exchange of a single amino acid — such as the sanroque mutation in Roquin-1 — leads to stronger autoimmunity. "We think we've found a target structure that controls autoimmunity and which could even be suitable for enhancing anti-tumor responses," says Heissmeyer, outlining the key results of the experiments from his team.

Roquin controls immunological processes

Together with colleagues from the Helmholtz Zentrum München and LMU, he had previously elucidated molecular functions of Roquin-1. The protein plays a key role in the adaptive immune response by controlling the activation and differentiation of T cells via the regulation of gene expression. Interestingly, it had been suggested that the Regnase-1 protein works in the same way. "What we didn't understand before was why the exchange of an amino acid in the sanroque mutation of Roquin-1 leads to a very similar form of autoimmunity as the loss of the gene encoding Regnase-1," says Heissmeyer.

The research group has now been able to demonstrate that Roquin-1 binds directly to the Regnase-1 protein so as to efficiently control the expression of certain genes. Surprisingly, the amino acids involved in this binding were discovered to be in close spatial proximity to the amino acid that was altered in the sanroque mutant. This suggested that they represent an extended binding site. In the gene encoding Roquin-1 in mice, the researchers successfully used CRISPR-Cas technology to replace individual amino acids that are involved in the binding to Regnase-1 with other specific amino acids. During the protein biosynthesis, this produced Roquin-1 proteins that interacted much more weakly with Regnase-1. These novel mutations led to autoimmunity in the rodents." Our data shows that the physical interaction of Roquin-1 with Regnase-1 is of key importance when it comes to controlling the activity of immune cells," summarizes the LMU scientist.

Enhancing immune responses as a therapeutic strategy

Although the observed autoimmunity damages the organism and leads to illnesses, there could be benefits for cancer patients in an enhanced activation of immune cells that fight tumors. "Mechanisms in T cells that our immune system has developed to prevent autoimmunity are actually used by the tumor to silence T cells," explains Heissmeyer. Accordingly, mice with the Roquin-1 gene mutations described above produced T cells that attacked malign cells with greater vigor after transfer into tumor-bearing mice.

This makes Roquin-1 an interesting target structure for oncology. Future research projects could seek to develop an inhibitor that reduces interactions between Roquin-1 and Regnase-1 — and that activates immune cells. "We expect that this will give a strong boost to the T cell response against tumors for a limited period of time," says Heissmeyer.

Journal reference:

Behrens, G.., et al. (2021) Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances anti-tumor responses. Nature Immunology. doi.org/10.1038/s41590-021-01064-3.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The whey to go: Researchers unlock the potential of whey-derived proteins for cancer prevention