Solid bone marrow aspirates may be a promising therapeutic approach for promoting wound healing

NewsGuard 100/100 Score

A new study compares the regenerative potential of blood/bone marrow aspirate concentrates obtained from arterial blood, venous blood, and bone marrow aspirate. The study, conducted in rabbits, is reported in the peer-reviewed journal Tissue Engineering Part A.

Blood concentrate material such as platelet-rick fibrin (PRF) is used in clinical practice to promote tissue regeneration in the fields of dentistry, orthopedic surgery, and plastic surgery. In the current study, Masako Fujioka-Kobayashi, from The Nippon Dental University, Tokyo, Japan, and colleagues, introduce a new type of solid bone marrow aspirate concentrate (sBMAC) material and show its regenerative potential in both gingival fibroblasts and osteoblasts in vitro compared with that of conventional PRF.

sBMAC induced significantly greater migratory potential than PRF obtained from either arterial or venous blood and also demonstrated promoted greater cell growth.

According to the investigators, "sBMAC treatment led to greater cell migration, angiogenesis, collagen synthesis, and higher osteoblast differentiation potential than Ar-PRF or Ve-PRF. Therefore, it was suggested that sBMAC might be a new candidate to promote wound healing and bone regeneration."

Koyanagi and coauthors at The Nippon Dental University have elegantly shown that solid bone marrow aspirates may be a promising therapeutic approach for promoting wound healing, particularly in bone settings. This exciting work brings to light the increasing use of naturally derived materials as the basis for novel therapeutics."

John P. Fisher, PhD, Tissue Engineering Co-Editor-in-Chief, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues, University of Maryland

Source:
Journal reference:

Koyanagi, M., et al. (2022) Regenerative Potential of Solid Bone Marrow Aspirate Concentrate Compared to Platelet-Rich Fibrin. Tissue Engineering Part A. doi.org/10.1089/ten.TEA.2021.0225.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How residential green spaces impact bone health and osteoporosis risk