Genetic predisposition to lipids, Alzheimer’s and heart disease in MLXIPL gene shaped by exogenous exposures

NewsGuard 100/100 Score

A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 9, entitled, "Exogenous exposures shape genetic predisposition to lipids, Alzheimer's, and coronary heart disease in the MLXIPL gene locus."

In this new study, researchers Yury Loika, Elena Loiko, Fan Feng, Eric Stallard, Anatoliy I. Yashin, Konstantin Arbeev, Allison L. Kuipers, Mary F. Feitosa, Michael A. Province, and Alexander M. Kulminski from Duke University, University of Pittsburgh and Washington University School of Medicine examined associations of single nucleotide polymorphisms (SNPs) of the MLXIPL lipid gene with Alzheimer's (AD) and coronary heart disease (CHD) and potentially causal mediation effects of their risk factors, high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) in two samples of European ancestry from the United States (US) (22,712 individuals 587/2,608 AD/CHD cases) and the United Kingdom Biobank (UKB) (232,341 individuals; 809/15,269 AD/CHD cases).

"Our results suggest that these associations can be regulated by several biological mechanisms and shaped by exogenous exposures."

Two patterns of associations (represented by rs17145750 and rs6967028) were identified. Minor alleles of rs17145750 and rs6967028 demonstrated primary (secondary) association with high TG (lower HDL-C) and high HDL-C (lower TG) levels, respectively. The primary association explained ~50% of the secondary one suggesting partly independent mechanisms of TG and HDL-C regulation. The magnitude of the association of rs17145750 with HDL-C was significantly higher in the US vs. UKB sample and likely related to differences in exogenous exposures in the two countries. rs17145750 demonstrated a significant detrimental indirect effect through TG on AD risk in the UKB only (βIE = 0.015, pIE = 1.9 × 10−3), which suggests protective effects of high TG levels against AD, likely shaped by exogenous exposures.

Also, rs17145750 demonstrated significant protective indirect effects through TG and HDL-C in the associations with CHD in both samples. In contrast, rs6967028 demonstrated an adverse mediation effect through HDL-C on CHD risk in the US sample only (βIE = 0.019, pIE = 8.6 × 10−4). This trade-off suggests different roles of triglyceride mediated mechanisms in the pathogenesis of AD and CHD.

"Finally, the results of this study suggest that genetic associations of SNPs from the MLXIPL gene locus with lipids, AD, and CHD are shaped by exogenous exposures. Further study of the related biological mechanisms can help to elucidate the related, modifiable risk factors."

Source:
Journal reference:

Loika, Y., et al. (2023) Exogenous exposures shape genetic predisposition to lipids, Alzheimer’s, and coronary heart disease in the MLXIPL gene locus. Aging-US. doi.org/10.18632/aging.204665.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research unlocks the role of macrophages in cancer relapse