Aging reorganizes pancreas circadian transcriptome

NewsGuard 100/100 Score

A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 16, entitled, "Reorganization of pancreas circadian transcriptome with aging."

The evolutionarily conserved circadian system allows organisms to synchronize internal processes with 24-h cycling environmental timing cues, ensuring optimal adaptation. Like other organs, the pancreas function is under circadian control. Recent evidence suggests that aging by itself is associated with altered circadian homeostasis in different tissues which could affect the organ's resiliency to aging-related pathologies.

Pancreas pathologies of either endocrine or exocrine components are age-related. Whether pancreas circadian transcriptome output is affected by age is still unknown. In their new study, researchers Deepak Sharma, Caitlin R. Wessel, Mahboobeh Mahdavinia, Fabian Preuss, and Faraz Bishehsari from Rush University and University of Wisconsin-Parkside profiled the impact of age on the pancreatic transcriptome over a full circadian cycle and elucidated a circadian transcriptome reorganization of pancreas by aging.

"Here we carried out a 24-h circadian transcriptomic analysis of pancreas from male mice at young and old ages."

The researchers defined a comprehensive circadian transcriptome landscape and identified biological pathways that are reflective of aging pancreas. Additionally, analysis of the pancreatic microenvironment revealed novel mechanistic insights into the fibroblast-mediated regulation of rhythmicity in aged pancreas. The team suggests that the circadian transcriptome in aging pancreas re-organizes in response to age-specific signals from the cellular microenvironment, primarily modulated by fibroblasts.

"Our study highlights gain of rhythms in the extrinsic cellular pathways in the aged pancreas and extends a potential role to fibroblast-associated mechanisms."

Source:
Journal reference:

Sharma, D., et al. (2023) Reorganization of pancreas circadian transcriptome with aging. Aging-US. doi.org/10.18632/aging.204929.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Link between aldehydes and premature aging revealed