Down Syndrome Research

Down syndrome or Down’s syndrome is a genetic condition caused by the presence of an additional copy of chromosome 21 in a person’s cells. This additional DNA causes the physical characteristics and developmental problems associated with the syndrome.

The extra copy of chromosome 21 (also referred to as trisomy 21) is acquired by chance and although Down’s syndrome is more common among babies born to mothers of an older age, mothers of any age may have a baby with the condition.

Down’s syndrome affects hundreds of babies worldwide irrespective of race, ethnicity, maternal age at conception, and social or economic class. Much research has been carried out to determine exactly how the extra chromosome 21 causes symptoms of the condition.

Research focused on the genes expressed in Down’s syndrome has led to the identification of a particular region of chromosome 21 that contains the main genes involved in the pathology of this condition. The approximate location of this region is 21q22.3 and much of the research carried out to search for key genes in Down’s syndrome involves the region 21q21–21q22.3.

Research conducted by J.R Arron et al has shown that dysregulation of transcription factors may be related to the phenotypes associated with Down’s syndrome. One of these transciption factors, NFAT, is controlled by two proteins, Down’s syndrome critical region 1 (DSCR1) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

The DSCR1 and DYRK1A genes are located on chromosome 21 and give rise to 1.5 times the usual amount of these proteins that is found in healthy cells. The high concentration of these proteins keeps NFAT mainly located in the cytoplasm rather than in the nucleus, which means NFAT is prevented from activating the transcription of certain genes. The proteins that these genes code for are therefore not produced.

Studies simulating human trisomy 21 in murine models have suggested that this dysregulation of transcription factors causes a weakened grip strength similar to the poor muscle tone observed in people with Down’s syndrome. Studies are currently ongoing to locate further genes in the Down’s syndrome critical region that may contribute to the pathology of the condition.

Further Reading

Last Updated: Feb 26, 2019

Dr. Ananya Mandal

Written by

Dr. Ananya Mandal

Dr. Ananya Mandal is a doctor by profession, lecturer by vocation and a medical writer by passion. She specialized in Clinical Pharmacology after her bachelor's (MBBS). For her, health communication is not just writing complicated reviews for professionals but making medical knowledge understandable and available to the general public as well.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mandal, Ananya. (2019, February 26). Down Syndrome Research. News-Medical. Retrieved on August 21, 2019 from https://www.news-medical.net/health/Down-Syndrome-Research.aspx.

  • MLA

    Mandal, Ananya. "Down Syndrome Research". News-Medical. 21 August 2019. <https://www.news-medical.net/health/Down-Syndrome-Research.aspx>.

  • Chicago

    Mandal, Ananya. "Down Syndrome Research". News-Medical. https://www.news-medical.net/health/Down-Syndrome-Research.aspx. (accessed August 21, 2019).

  • Harvard

    Mandal, Ananya. 2019. Down Syndrome Research. News-Medical, viewed 21 August 2019, https://www.news-medical.net/health/Down-Syndrome-Research.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post