Myelin Function

The myelin sheath is a protective covering that surrounds fibers called axons, which are the long thin projections that extend from the main body of a nerve cell or neuron. This sheath is composed of protein and lipids.

Image Credit: MattLPhotography / Shutterstock.com

What are axons?

Axons vary in length from 1 millimeter (mm) to up to 1 meter (m) or more. The primary function of axons is to carry nerve signals away from the main neuronal body to other nerve cells, muscles, and glands. When axons are bundled together, they form nerves which create a network for the passage of electrical nerve impulses across the body.

The main function of myelin is to protect and insulate these axons and enhance the transmission of electrical impulses. If myelin is damaged, the transmission of these impulses is slowed down, which is seen in severe neurological conditions such as multiple sclerosis (MS).

How does myelin enhance the transmission of electrical impulses?

Myelin surrounds and insulates the axon and builds specialized molecular structures at small, uncovered gaps in the sheath, which are referred to as the nodes of Ranvier. In the case of unmyelinated axons, the nerve impulse, or action potential, moves along the axon continuously. By contrast, in myelinated nerve fiber, currents can only occur where the axonal membrane is uncovered at the nodes of Ranvier.

The lipid-rich myelin sheath, therefore, acts as an insulator, offering high transverse resistance and only allowing a current to flow along with the segments that lie between these nodes of Ranvier.

Taking the most thoroughly myelinated axon as an example, which is 12 to 20 micrometers (μm) in diameter, the speed at which an impulse is conducted along the axon is 70 to 120 m/s, which is the speed of a race car.

Another example of how space and energy are saved by the myelin sheath can be illustrated through the comparison of squid and frog axons. In the squid, a giant axon can span a diameter of 500 μm but is unmyelinated, whereas the diameter of a frog axon, which is myelinated, is only 12 μm. Calculations show that when both nerves conduct an impulse at a speed of 25 m/s and a temperature of 20˚C, the unmyelinated squid axon uses up 5,000 times more energy and 1,500 times more space than the frog axon.

Damaged myelin

MS is an autoimmune condition where the body’s own immune cells attack this myelin sheath. T cells strip the myelin from the nerve fibers it protects, thus leading the fibers to be exposed and uninsulated. These unprotected nerves are then less able to conduct electrical impulses from the brain to other parts of the body, which causes the nerve signals that are sent to the brain to be delayed and distorted.

Image Credit: BlueRingMedia / Shutterstock.com

The damaged areas of the nerve where the myelin has been destroyed form hard scar tissue (sclerosis) that further disrupts the conduction capacity of the nerve. These scarred areas are also referred to as plaques and can be identified using magnetic resonance imaging (MRI), which is an imaging technique that aids doctors in the diagnosis of MS

As more myelin is destroyed, the less efficient the nerves are at transmitting nerve impulses. The severity of MS symptoms depends on whether the myelin has been partially or completely stripped from the nerve fibers. Determining the extent of damage to the myelin sheath may be key to predicting how severe symptoms will become.

References

Further Reading

Last Updated: Apr 30, 2021

Sally Robertson

Written by

Sally Robertson

Sally first developed an interest in medical communications when she took on the role of Journal Development Editor for BioMed Central (BMC), after having graduated with a degree in biomedical science from Greenwich University.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Robertson, Sally. (2021, April 30). Myelin Function. News-Medical. Retrieved on July 23, 2021 from https://www.news-medical.net/health/Myelin-Function.aspx.

  • MLA

    Robertson, Sally. "Myelin Function". News-Medical. 23 July 2021. <https://www.news-medical.net/health/Myelin-Function.aspx>.

  • Chicago

    Robertson, Sally. "Myelin Function". News-Medical. https://www.news-medical.net/health/Myelin-Function.aspx. (accessed July 23, 2021).

  • Harvard

    Robertson, Sally. 2021. Myelin Function. News-Medical, viewed 23 July 2021, https://www.news-medical.net/health/Myelin-Function.aspx.

Comments

  1. Franceliz Galindez Franceliz Galindez Bolivarian Republic of Venezuela says:

    buena traducion m gusta

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.