Scientists identify cause of double-cortex syndrome

Researchers at McGill University have discovered the cause of an inherited form of epilepsy. The disease, known as double-cortex syndrome, primarily affects females and arises from mutations on a gene located on the X chromosome. Drs. Susanne Bechstedt and Gary Brouhard of the Department of Biology have used a highly advanced microscope to discover how these mutations cause a malformation of the human brain. The results of their study are published in the journal Developmental Cell.

When the brain develops in the uterus, new brain cells are born deep within the brain, near the center. These newborn brain cells then crawl out of the so-called "niche" where they were born and migrate outward to the edges of the brain. This outermost layer of the brain is known as the cerebral cortex and is the seat of all higher-level thinking and cognition.

In girls with a mutation on their X chromosome, the outward migration of brain cells unfortunately fails. Instead of making it all the way to the edges of the brain, some of the brain cells pile up on top of one another and form a secondary or "double-cortex." The activity of these abnormally placed brain cells gives rise to seizures and also, in some cases, mental retardation.

Drs. Bechstedt and Brouhard were able to purify the product of the mutated gene, a protein known as doublecortin, and to watch the protein in action under a microscope. This protein helps brain cells to build a scaffold inside themselves, much like the scaffolds at construction sites, built of "poles" called microtubules; these form a "skeleton" for the brain cells, known as the cytoskeleton. Brain cells require this internal skeleton to crawl and to migrate, much as humans need their skeletons to walk and run.

The McGill researchers discovered that, in order for doublecortin proteins to help build this scaffold, many doublecortin proteins must work together as a team. They found that disease-causing mutations cause a breakdown in this teamwork. This loss of teamwork is sufficient to prevent the brain cells from constructing a proper "skeleton."

This discovery has implications for treatments for a range of conditions, from other forms of epilepsy to spinal cord injuries. In each case, therapies are increasingly directed at triggering brain cells to extend their skeletons -- for example when re-growing a nerve ending past the site of a wound in the spinal cord. Understanding how brain cells construct their skeletons will open avenues for doctors to target the brain cell skeleton to extend and re-grow when needed.


  1. John Nichols John Nichols Canada says:

    Does a male with xxy have migraine problems also on epileptic medication, tegratol CR, 200 mg take 1 1/2 tabs 2x day, and clobazam 10 mg 1 tab 2x day.

  2. Linda Egdell Linda Egdell Canada says:

    The info on this subject amazing. Our dtr who has uncontrolled epilepsy, some mental challenges and a double cortex lives with us. She is now 38. It lifts the spirits to know that research continures in this area.

    • Ahmed Awdi Ahmed Awdi Romania says:

      Linda can we talk? my daughter has 9 years old also with DCS

      • Eric Finch Eric Finch United States says:

        My 5 yr old daughter has this and have found not much other than a couple paragraphs on it.

        • Joel-Ruth Santa Maria Joel-Ruth Santa Maria United States says:

          Our daughter is 13 yr old now. Doctors found this condition when she was 5 months old. She is actually taking a lot of medication and the seizures does not go away totally.

          If some one wants to share about your child's history with my family we will be pleasure to be in contact with you.  

          email: [email protected]

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
You might also like... ×
Protein changes essential for normal adult muscle function