Poverty can become embedded across wide swaths of the genome, study finds

NewsGuard 100/100 Score

A new Northwestern University study challenges prevailing understandings of genes as immutable features of biology that are fixed at conception.

Previous research has shown that socioeconomic status (SES) is a powerful determinant of human health and disease, and social inequality is a ubiquitous stressor for human populations globally. Lower educational attainment and/or income predict increased risk for heart disease, diabetes, many cancers and infectious diseases, for example. Furthermore, lower SES is associated with physiological processes that contribute to the development of disease, including chronic inflammation, insulin resistance and cortisol dysregulation.

In this study, researchers found evidence that poverty can become embedded across wide swaths of the genome. They discovered that lower socioeconomic status is associated with levels of DNA methylation (DNAm) -- a key epigenetic mark that has the potential to shape gene expression -- at more than 2,500 sites, across more than 1,500 genes.

In other words, poverty leaves a mark on nearly 10 percent of the genes in the genome.

Lead author Thomas McDade said this is significant for two reasons.

"First, we have known for a long time that SES is a powerful determinant of health, but the underlying mechanisms through which our bodies 'remember' the experiences of poverty are not known," said McDade, professor of anthropology in the Weinberg College of Arts and Sciences at Northwestern and director of the Laboratory for Human Biology Research.

"Our findings suggest that DNA methylation may play an important role, and the wide scope of the associations between SES and DNAm is consistent with the wide range of biological systems and health outcomes we know to be shaped by SES."

Secondly, said McDade, also a faculty fellow at Northwestern's Institute for Policy Research, experiences over the course of development become embodied in the genome, to literally shape its structure and function.

"There is no nature vs. nurture," he adds.

McDade said he was surprised to find so many associations between socioeconomic status and DNA methylation, across such a large number of genes.

"This pattern highlights a potential mechanism through which poverty can have a lasting impact on a wide range of physiological systems and processes," he said.

Follow-up studies will be needed to determine the health consequences of differential methylation at the sites the researchers identified, but many of the genes are associated with processes related to immune responses to infection, skeletal development and development of the nervous system.

"These are the areas we'll be focusing on to determine if DNA methylation is indeed an important mechanism through which socioeconomic status can leave a lasting molecular imprint on the body, with implications for health later in life," McDade said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study unveils novel bladder cancer diagnostic model based on key mitochondrial genes