Deactivating the cancer-causing protein by cutting off other proteins that activate it

NewsGuard 100/100 Score

In a line of dominos, if you take out a single piece, the last one will never fall. Similarly, a lot of pieces have to line up and be pushed at the same time in a cell to result in cancer. Twenty-two years ago, Cold Spring Harbor Laboratory (CSHL) Professor Alea Mills discovered the protein p63. More recently, she found that a specific version of p63 (∆Np63α) causes cancer when it is overactive. Mills and her colleagues have been trying to devise ways to turn it off, but to no avail. Now they have found a way to stop the dominos from falling, not by turning off ∆Np63α itself, but by turning off other proteins that work together to activate it.

p63 regulates stem cells, which are immature cells that have the potential to grow into different kinds of mature cells. When one variant of the protein, ∆Np63α, is overactive, stem cell production never turns off. When that happens in squamous cells, which form the covering of the skin and many other organs, stem cells grow out of control and form tumors. These cancer stem cells invade other tissues and even wrap around the nerves of the face. The tumors can be painful, disfiguring, and difficult to remove.

I think of the cancer stem cells as kind of like a bad seed in your garden that will grow a weed if not surgically removed or somehow controlled."

Professor Alea Mills

Mills' team identified a cascade of four proteins that act like a series of dominos to activate ∆Np63α. Some of these proteins were already known to be involved in promoting other kinds of cancer, so there were already drugs in clinical trials to deactivate them.

When the Mills group added these drugs to patient-derived cancer stem cells growing in a Petri dish, the cells became less aggressive, less mobile, and slower growing. Mice with these cancerous squamous cells treated with these drugs developed smaller tumors.

Matt Fisher, a postdoctoral fellow in Mills' lab who led this study, says, "Squamous cell cancer is not an easy cancer to treat right now, and there's not a lot of therapeutic options. This is why we think identifying pathways that include druggable targets is so important." The discovery of four new therapeutic targets for this disease offers new hope for treating this deadly cancer.

Source:
Journal reference:

Fisher, M.L., et al. (2021) BRD4 regulates transcription factor ∆Np63α to drive a cancer stem cell phenotype in squamous cell carcinomas. Cancer Research. doi.org/10.1158/0008-5472.CAN-21-0707.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study links air pollution to increased colorectal cancer risk through DNA changes