Researchers discover a concise way to synthesize potent natural neurotoxin

NewsGuard 100/100 Score

Researchers have discovered a concise way to synthesize a "biosynthetic and ecological enigma" that has intrigued chemists and biologists for more than a century: tetrodotoxin (TTX), a potent natural neurotoxin commonly associated with pufferfish that is also used as a vital probe in neuroscience research.

The novel 22-step process they outline provides a scalable approach to producing biologically active TTX and TTX derivatives from commercially available starting materials. Illuminating this synthesis process will also help scientists better understand TTX biosynthesis and chemical ecology, and may inform development of next-generation clinical analgesics.

TTX is one of the most powerful neurotoxins known and has been found in a number of disparate species ranging from pufferfish and octopuses to toads and newts. Biosynthesized in bacteria that infect these species, it accumulates in their hosts' bodies and is often co-opted as a defense against predators. TTX has also become an indispensable tool in neurological research. As a selective blocker of voltage-gated sodium channels in nerve cell membranes, it can be used to silence signals within neural circuits.

Its use as a clinical analgesic is also a topic of ongoing research. However, the TTX molecule is complex – an intricate structure of oxygen-rich interconnected rings – and its synthesis by organic chemists has been challenging. Here, David Konrad and colleagues analyzed previous syntheses of TXX, the first of which was reported in 1972, uncovering several common features that motivated them to pursue a distinct strategy. Now, they present a relatively concise method to synthesize TTX from a glucose derivative.

According to Konrad et al., a 1,3-dipolar cycloaddition enabled formation of the cyclohexane core of the molecule at a later stage than previous approaches. In total, the 22-step process enabled an 11% overall yield from starting materials.

Source:
Journal reference:

Konrad, D.B., et al. (2022) A concise synthesis of tetrodotoxin. Science. doi.org/10.1126/science.abn0571.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research explores the health benefits of resistant starch in plant-based diets