Chronological and biological age may be important determinants of vaccine-preventable outcomes

NewsGuard 100/100 Score

A new editorial paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 5, entitled, "Parsing chronological and biological age effects on vaccine responses."

Researchers Chris P. Verschoor and George A. Kuchel from Health Sciences North Research Institute in Ontario, Canada, began this editorial by writing that the COVID-19 pandemic illustrated that older age, particularly when accompanied by common chronic illnesses of aging, is arguably the most significant population attributable factor for severe outcomes of acute respiratory infection, including the risk of hospitalization, disability and death.

"In the absence of widely available and highly effective treatments, vaccines remain our most powerful tool to help overcome this vulnerability through the prevention of primary infection, and far more importantly, by improving clinical outcomes once infection does take place."

In the case of SARS-CoV-2, vaccine effectiveness (VE) against hospitalization was remarkable for dominant strains prior to omicron, whereas for influenza or Streptococcus pneumoniae VE ranges from 80% to <10%, depending on the season and infecting strain/serotype. Nonetheless, for all three pathogens VE decreases with age, which is caused by deficiencies in the capacity of older adults' immune systems to mount productive and persistent antibody and/or cell-mediated responses to the vaccine. Given that extremely large, costly and typically lengthy clinical trials are often required to estimate VE reliably, the vast majority of human vaccine studies assess immune correlates of protection as a proxy to VE. For these studies, antibody related parameters such as neutralization capacity are most commonly employed since they are generally simpler from a technical standpoint and many have been rigorously standardized.

"Although informative, cross-sectional studies comparing immune parameters across age groups to understand 'immune aging' risk ignore the degree to which departures from healthy aging might contribute."

Source:
Journal reference:

Verschoor, C. P., & Kuchel, G. A. (2023). Parsing chronological and biological age effects on vaccine responses. Aging. doi.org/10.18632/aging.204572.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Penn State study examines how a person's telomeres are affected by caloric restriction