Advancing computational pathology with UNI and CONCH foundation models

NewsGuard 100/100 Score

Foundation models, advanced artificial intelligence systems trained on large-scale datasets, hold the potential to provide unprecedented advancements for the medical field. In computational pathology (CPath), these models may excel in diagnostic accuracy, prognostic insights, and predicting therapeutic responses. Researchers at Mass General Brigham have designed the two of the largest CPath foundation models to date: UNI and CONCH. These foundation models were adapted to over 30 clinical, diagnostic needs, including disease detection, disease diagnosis, organ transplant assessment, and rare disease analysis. The new models overcame limitations posed by current models, performing well not only for the clinical tasks the researchers tested but also showing promise for identifying new, rare and challenging diseases. Papers on UNI and CONCH are published today in Nature Medicine. 

UNI is a foundation model for understanding pathology images, from recognizing disease in histology region-of-interests to gigapixel whole slide imaging. Trained using a database of over 100 million tissue patches and over 100,000 whole slide images, it stands out as having universal AI applications in anatomic pathology. Notably, UNI employs transfer learning, applying previously acquired knowledge to new tasks with remarkable accuracy. Across 34 tasks, including cancer classification and organ transplant assessment, UNI outperformed established pathology models, highlighting its versatility and potential applications as a CPath tool. 

CONCH is a foundation model for understanding both pathology images and language. Trained on a database of over 1.17 million histopathology image-text pairs, CONCH excels in tasks like identifying rare diseases, tumor segmentation, and understanding gigapixel images. Because CONCH is trained on text, pathologists can interact with the model to search for morphologies of interest. In a comprehensive evaluation across 14 clinically relevant tasks, CONCH outperformed standard models and demonstrated its effectiveness and versatility. 

The research team is making the code publicly available for other academic groups to use in addressing clinically relevant problems. 

Foundation models represent a new paradigm in medical artificial intelligence. These models are AI systems that can be adapted to many downstream, clinically relevant tasks. We hope that the proof-of-concept presented in these studies will set the stage for such self-supervised models to be trained on larger and more diverse datasets." 

Faisal Mahmood, PhD, corresponding author of the Division of Computational Pathology in the Department of Pathology at Mass General Brigham

Journal references:
  1. Chen, R. J., et al. (2024). Towards a general-purpose foundation model for computational pathology. Nature Medicine.
  2. Lu, M. Y., et al. (2024). A visual-language foundation model for computational pathology. Nature Medicine.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals ferroptosis as a major driver of severe COVID-19 lung damage