CRISPR: Ethical and Safety Concerns

CRISPR and Cas proteins have become a crucial tool for genetic manipulation in biomedical research and biotechnology, and the crux of its action is the recognition of specific sequences in the DNA and their subsequent cleavage from the chain. One specific system, CRISPR-Cas9, has become the standard for genetic editing, since it can be tailored to target any set of DNA sequences. Thus it is of no wonder that it caused an upheaval in biomedical field.

Nevertheless, it must be noted that the use of CRISPR/Cas9 carries enormous possibilities to further advance the human health and well-being, which is the reason why this system is being researched in a myriad of different human diseases – including cancer and HIV/AIDS infections. Still, as it is the case with any new technology, the benefits of CRISPR/Cas9 are followed by equally huge risks from potential misuse, but also unforeseen consequences.

Ethical concerns and safety issues

Akin to other emerging technologies in biomedical research, human genome editing opens some serious questions regarding equality and justice, for example who will have access to potential treatment and for whom those treatments will be developed. Therefore before CRISPR/Cas9 technology moves forward with clinical applications, ethical and safety concerns should be addressed.

Swift proliferation of germline editing therapies using CRISPR/Cas9 technology would undoubtedly bring a nontrivial risk. Therefore, this approach should be adopted into clinical practice only after appropriately paced review, similar to an ethical inquiry takes place. Regulation seems to be the most feasible approach, although some experts opt for temporary moratorium and laissez-faire approach.

One of the biggest risks of germline editing therapy is the introduction of alleles with unforeseen side-effects that would be recognized generations after initial gene editing. This is the reason why such therapies must be vetted by institutional regulators and funding bodies, with adequate verification of modifications in model cell line to ensure normal propagation rates of DNA introduced into the genome.

Moreover, any germline modification should offer unambiguous benefits to the patient. The technology should address monogenic disease that have no alternative treatment option, or widespread diseases for which embryo loss via prenatal genetic diagnosis and treatment will minimize embryo loss during germline modification research.

Current guidelines and considerations

A regulatory framework for human germline CRISPR/Cas modification should be introduced in order to meet both technical and ethical requirements inherent to these therapies. Such framework should strive to address unshaped safety mechanisms, augmented risk of multigenerational side-effects, ethical hurdles regarding human embryos, as well as any equity concerns.

Researchers in the United States are already addressing the necessity for regulation of human germline editing. At the end of 2015, the National Institutes of Health (NIH) still refuses to fund research proposals for CRISPR/Cas germline editing therapies. Nevertheless, it has to be emphasized that this policy does not automatically cover projects that are funded privately.

The International Summit on Human Gene Editing issued a statement on December 3rd 2015 that gene-editing technology should not be employed to modify human embryos intended for establishing a pregnancy. If a scientific consensus is reached that unviable embryos may be used for research purposes (in order to improve the efficacy of CRISPR/Cas system), lawmakers should evaluate novel guidelines regarding the funding and safety of genetic manipulation in these embryos.

In order to avoid fear-mongering, researchers will have to find a way to responsibly explain this technology to the general public. Caution and regulations are welcomed at the moment, but there is also a need for the development of prudent and well-timed set of guidelines – not only for the scientific community, but also for the humanity as a whole.


  6. Dhillon V. Genome Editing Systems. In: BioCoder #8: July 2015. O'Reilly Media, Inc., Sebastopol, CA 95472, 2015; pp. 59-66.
  7. Thakore PI, Gersbach CA. Genome Engineering for Therapeutic Applications. In: Laurence J, Franklin M, editors. Translating Gene Therapy to the Clinic: Techniques and Approaches. Academic Press, Elsevier, 2015; pp. 27-44.

Further Reading

Last Updated: Jul 20, 2023

Dr. Tomislav Meštrović

Written by

Dr. Tomislav Meštrović

Dr. Tomislav Meštrović is a medical doctor (MD) with a Ph.D. in biomedical and health sciences, specialist in the field of clinical microbiology, and an Assistant Professor at Croatia's youngest university - University North. In addition to his interest in clinical, research and lecturing activities, his immense passion for medical writing and scientific communication goes back to his student days. He enjoys contributing back to the community. In his spare time, Tomislav is a movie buff and an avid traveler.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Meštrović, Tomislav. (2023, July 20). CRISPR: Ethical and Safety Concerns. News-Medical. Retrieved on June 19, 2024 from

  • MLA

    Meštrović, Tomislav. "CRISPR: Ethical and Safety Concerns". News-Medical. 19 June 2024. <>.

  • Chicago

    Meštrović, Tomislav. "CRISPR: Ethical and Safety Concerns". News-Medical. (accessed June 19, 2024).

  • Harvard

    Meštrović, Tomislav. 2023. CRISPR: Ethical and Safety Concerns. News-Medical, viewed 19 June 2024,


  1. Nimmi Ragavan Nimmi Ragavan Australia says:

    One option would be to do it only where the current inherited germline is so horrific that modifications would be a positive contribution. Even then, perhaps it should be done on an individual basis, and the person advised that having children may not be optimal and adoption a safer option. I dont have children and dont miss the idea of continuing my genes into the future. But then I have siblings who have children.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Ricoh and ERS Genomics enter into CRISPR/Cas9 license agreement