Cytoophidia Assembly, Morphology & Function

Cytoophidia are filamentous structures present inside a cell. Studies suggest that cytoophidia may have important biological functions in the compartmentalization of cells.

Skip to:

Cytoophidia are filamentous structures present inside a cell.Oleg Senkov | Shutterstock

In 2010, cytidine triphosphate synthase (CTPS) was independently discovered by three research groups. CTPS is a metabolic enzyme that is responsible for the de novo synthesis of nucleotide cytidine triphosphate (CTP) that can form filamentous structures called cytoophidia. These filamentous structures are found in humans and several other diverse species.

Morphology and function of cytoophidia

Cytoophidia in humans

Cytoophidia are present in several prokaryotes and eukaryotes. However, they differ in number, length, polarity, and localization in across different species. In humans, CTPS is found in both the cytoplasm and nucleus. In the nuclues, cytoophidia are mainly straight, whereas cytoplasmic cytoophidia can be curved, heart, ring-shaped, and curled. Cytoplasmic cytoophidia are longer and have both sharp and blunt ends compared to nuclear cytoophidia. These sturctures are present during all cell cycle stages and can be found within a wide range of organs.

Cytoophidia in Drosophila, bacteria and fungi

The widespread presence of cytoophidia suggests that it may play a role in the regulation of the metabolism. Indeed, it has been discovered within in the optic lobe ​(the brain structures involved in vision) of Drosophila, where it is essential for homeostasis. It is also present in germline cells where it is thought to be involved in membrane phospholipid synthesis.

In bacteria, CTPS works with bacterial cytoskeletal proteins to regulate the curved morphology of the cell membrane. This function is independent of its enzymatic activity. Similarly, it is present in fungi where it exists in different forms based on the conditions. One of the functions of cytoophidium is to store inactive enzymes that can be released when conditions are favorable. In this way, it is both regulated by, and regulates, metabolism.

Cytoophidium assembly

The cytoophidium is highly sensitive to growth and nutrient conditions. The CTPS filament may be confined to binding sites and its activity may be disrupted in conditions of environmental stress. When the stress is removed, CTPS is again released into the cytoplasm and forms active CTPS.

One of the factors that regulate the assembly and disassembly of cytoophidium is cellular proliferation. For example, the number of cytoophidia in Drosophila neural stem cells increases during the process of differentiation.

Cytoophidia can also be induced in cases where nutrients are limited, including glutamine deprivation. In such cases, the CTPS filament remains inactive. An L-glutamine analog, 6-diazo-5-oxo-L-norleucine (DON), can also promote cytoophidium dissociation. The CTPS filaments formation is inversely related to its ubiquitination and is resistant to the autophagy-lysosome degradation process.

Regulation of cytoophidium assembly

There are several proteins that regulate the assembly and disassembly of CTPS. One such regulator is non-receptor tyrosine kinase DAck. This is the Drosophila homolog of mammalian Ack1. This regulator colocalizes with CTPS in the germline cells of the flies.

Mutations in this protein are related to architecture and morphology aberrations of the CTPS filaments. This often leads to a reduction in fertility. Proto-oncogene Casitas B-lineage lymphoma (Cbl) also controls the structure of cytoophidium.

C-Myc is an oncogene that is upregulated in several cancers. Similarly, CTPS expression is also upregulated in many cancer forms. Studies show that overexpression of Myc can increase the expression of cytoophidium, while the downregulation of Myc can reduce or obstruct cytoophidium formation. Such studies show that CTPS could be a potential therapeutic target in myc-dependent cancers.

Inosine 5[prime]-monophosphate dehydrogenase(IMPDH) has also been shown to upregulate the production of cytoophidium filamentous structures.

Sources

Further Reading

Last Updated: May 1, 2019

Dr. Surat P

Written by

Dr. Surat P

Dr. Surat graduated with a Ph.D. in Cell Biology and Mechanobiology from the Tata Institute of Fundamental Research (Mumbai, India) in 2016. Prior to her Ph.D., Surat studied for a Bachelor of Science (B.Sc.) degree in Zoology, during which she was the recipient of an Indian Academy of Sciences Summer Fellowship to study the proteins involved in AIDs. She produces feature articles on a wide range of topics, such as medical ethics, data manipulation, pseudoscience and superstition, education, and human evolution. She is passionate about science communication and writes articles covering all areas of the life sciences.  

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    P, Surat. (2019, May 01). Cytoophidia Assembly, Morphology & Function. News-Medical. Retrieved on November 18, 2019 from https://www.news-medical.net/life-sciences/Cytoophidia-Assembly-Morphology-Function.aspx.

  • MLA

    P, Surat. "Cytoophidia Assembly, Morphology & Function". News-Medical. 18 November 2019. <https://www.news-medical.net/life-sciences/Cytoophidia-Assembly-Morphology-Function.aspx>.

  • Chicago

    P, Surat. "Cytoophidia Assembly, Morphology & Function". News-Medical. https://www.news-medical.net/life-sciences/Cytoophidia-Assembly-Morphology-Function.aspx. (accessed November 18, 2019).

  • Harvard

    P, Surat. 2019. Cytoophidia Assembly, Morphology & Function. News-Medical, viewed 18 November 2019, https://www.news-medical.net/life-sciences/Cytoophidia-Assembly-Morphology-Function.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
UCI researchers develop new cell therapy to improve memory, prevent seizures after TBI