Lipid Biological Functions

It is now known that lipids play a much more important role in the body than previously believed. It was previously known that lipids played the role of storage of energy or forming cell membranes alone. Researchers have found that lipids have a much more diverse and widespread biological role in the body in terms of intracellular signalling or local hormonal regulation etc.

Lipids are synthesized in the body using complex biosynthetic pathways. However, there are some lipids that are considered essential and need to be supplemented in diet.

In 1929, for example, George and Mildred Burr demonstrated that linoleic acid was an essential dietary constituent. Bergström, Samuelsson and others in 1964 added to the knowledge of role of lipids in the body by finding that essential fatty acid arachidonate was the biosynthetic precursor of the prostaglandins with their effects on inflammation and other diseases.

In 1979 the first biologically active phospholipid, platelet activating factor was discovered and there was a raised awareness regarding phosphatidylinositol and its metabolites in cellular signally and messaging.

Role of lipids in the body

Lipids have several roles in the body, these include acting as chemical messengers, storage and provision of energy and so forth.

Chemical messengers

All multicellular organisms use chemical messengers to send information between organelles and to other cells. Since lipids are small molecules insoluble in water, they are excellent candidates for signalling. The signalling molecules further attach to the receptors on the cell surface and bring about a change that leads to an action.

The signalling lipids, in their esterified form can infiltrate membranes and are transported to carry signals to other cells. These may bind to certain proteins as well and are inactive until they reach the site of action and encounter the appropriate receptor.

Storage and provision of energy

Storage lipids are triacylglycerols. These are inert and made up of three fatty acids and a glycerol.

Fatty acids in non esterified form, i.e. as free (unesterified) fatty acids are released from triacylglycerols during fasting to provide a source of energy and to form the structural components for cells.

Dietary fatty acids of short and medium chain size are not esterified but are oxidized rapidly in tissues as a source of ‘fuel”.

Longer chain fatty acids are esterified first to triacylglycerols or structural lipids.

Maintenance of temperature

Layers of subcutaneous fat under the skin also help in insulation and protection from cold. Maintenance of body temperature is mainly done by brown fat as opposed to white fat. Babies have a higher concentration of brown fat.

Membrane lipid layer formation

Linoleic and linolenic acids are essential fatty acids. These form arachidonic, eicosapentaenoic and docosahexaenoic acids. These for membrane lipids.

Membrane lipids are made of polyunsaturated fatty acids. Polyunsaturated fatty acids are important as constituents of the phospholipids, where they appear to confer several important properties to the membranes. One of the most important properties are fluidity and flexibility of the membrane.

Cholesterol formation

Much of the cholesterol is located in cell membranes. It also occurs in blood in free form as plasma lipoproteins. Lipoproteins are complex aggregates of lipids and proteins that make travel of lipids in a watery or aqueous solution possible and enable their transport throughout the body.

The main groups are classified as chylomicrons (CM), very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL), based on the relative densities

Cholesterol maintains the fluidity of membranes by interacting with their complex lipid components, specifically the phospholipids such as phosphatidylcholine and sphingomyelin. Cholesterol also is the precursor of bile acids, vitamin D and steroidal hormones.

Prostaglandin formation and role in inflammation

The essential fatty acids, linoleic and linolenic acids are precursors of many different types of eicosanoids, including the hydroxyeicosatetraenes, prostanoids (prostaglandins, thromboxanes and prostacyclins), leukotrienes (and lipoxins) and resolvins etc. these play an important role in pain, fever, inflammation and blood clotting.

The "fat-soluble" vitamins

The "fat-soluble" vitamins (A, D, E and K) are essential nutrients with numerous functions.

Acyl-carnitines transport and metabolize fatty acids in and out of mitochondria.

Polyprenols and their phosphorylated derivatives help on transport of molecules across membranes.

Cardiolipins are a subtype of glycerophospholipids with four acyl chains and three glycerol groups. They activate enzymes involved with oxidative phosphorylation.

Further Reading

Last Updated: Jul 20, 2023

Dr. Ananya Mandal

Written by

Dr. Ananya Mandal

Dr. Ananya Mandal is a doctor by profession, lecturer by vocation and a medical writer by passion. She specialized in Clinical Pharmacology after her bachelor's (MBBS). For her, health communication is not just writing complicated reviews for professionals but making medical knowledge understandable and available to the general public as well.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mandal, Ananya. (2023, July 20). Lipid Biological Functions. News-Medical. Retrieved on July 20, 2024 from

  • MLA

    Mandal, Ananya. "Lipid Biological Functions". News-Medical. 20 July 2024. <>.

  • Chicago

    Mandal, Ananya. "Lipid Biological Functions". News-Medical. (accessed July 20, 2024).

  • Harvard

    Mandal, Ananya. 2023. Lipid Biological Functions. News-Medical, viewed 20 July 2024,


  1. Ahmed Abdelrahim Ahmed Abdelrahim Russia says:

    ما هي الخصائص الرئيسية للأغشية البيولوجية؟

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Pioneering Live Cell Imaging - Yokogawa's Impact and Innovations