New genomic, proteomic tools yield clues to exercise/diet effects on obesity, metabolic syndrome and diabetes

NewsGuard 100/100 Score

Applying the latest genomic and proteomic techniques has given researchers new clues for the interaction between exercise and diet, glucose metabolism and improvement in cardiovascular disease (CVD) risk factors.

With obesity and the metabolic syndrome being increasingly recognized as emerging major public health problems, “biomarkers for the progression of NIDDM (non-insulin dependent diabetes mellitus, or type-2 diabetes) are sorely needed, as are quantitative endpoints for exercise and diet interventions,” according to Dustin S. Hittel of the Research Center for Genetic Medicine at Children’s National Medical Center (CNMC), Washington, D.C.

Hittel said the results of a recent study “indicate the widespread and differential expression of metabolic, contractile and signal transduction proteins with training. We believe that comparative mRNA and proteomic profiling has provided us with a unique insight into the underlying metabolic crisis in chronically untrained muscle and clues as to how exercise reverses these effects.”

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New insights into how exercise may help prevent or slow cognitive decline during aging