New technique paves the way for developing high-sensitive microsensors for the rapid detection of neurotoxins

NewsGuard 100/100 Score

To understand how brain cells release compounds (or transmitters) used when the cells communicate with each other, Vladimir Parpura, associate professor of neuroscience, and Umar Mohideen, professor of physics at University of California - Riverside, devised a new technique, used commonly in physics, that can be applied now to the study of a wide range of biological processes and interactions.

The researchers, who performed their experiments on brain proteins called SNAREs, published their results in the July issue of Biophysical Journal.

The technique, commonly referred to as Atomic Force Microscopy, uses the deflection of microfabricated membranes of silicon nitride, about 100 times thinner than the human hair, to measure very small forces. Using this technique on rat brain proteins, the researchers were able to measure the bonding between single protein molecules that are involved in the release of the neurotransmitters. They also were able to classify the strength of the molecular interactions (bonding) between 3 of the SNARE proteins that participate in the process.

SNARE proteins are located on vesicles (tiny membrane-encased packets that contain neurotransmitters or enzymes) and the plasma membrane of brain cells. These proteins are thought to play a key role in the final fusion of the synaptic vesicle with the plasma membrane, a process that makes communication between cells possible.

"Our results shed new light on how these proteins are involved in exocytosis - the process by which a biological cell releases substances into its environment," Parpura said. "We now understand better how these proteins interact at the molecular level and we can apply this to improve our detection of toxins acting on these proteins."

The researchers used the technique also to develop a sensor for detecting botulinum toxin, responsible for an often fatal type of food poisoning.

"Our sensor is extremely sensitive because it is capable of detecting interactions between two single molecules," Mohideen said. "As a result, the sample size you need for testing can be extremely small, of the order of a few molecules."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
PET brain scans could reveal hidden inflammation in patients with multiple sclerosis