Two tumor suppressor genes function to disrupt overactive EGFR signaling

NewsGuard 100/100 Score

Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed resistance to these drugs and are therefore no longer responsive to drug treatment. In a recent research article published in the Journal of Clinical Investigation, Goutham Narla and colleagues at Case Western Reserve University sought to better understand the molecular players in the EGFR signaling pathway in hopes of finding new drug targets for EGFR-associated cancers. Using cancerous human lung tissue and a mouse model of EGFR-associated lung cancer, The Narla team discovered that two tumor suppressor genes, KLF6 and FOXO1, function to disrupt overactive EGFR signaling. After treating the cancerous lung tissue and cancer-prone mice with an FDA-approved drug called trifluoperazine hydrochloride (TFP), which increases the activity of FOXO1, they restored the effectiveness of the anti-EGFR drug erlotinib and reduced tumor growth. Their work identified new drug targets for EGFR-associated cancers and suggests that combinatorial drug therapy regimens may improve treatment outcome.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
UC researchers open Phase 2 clinical trial to test new combination treatment for glioblastomas