Combining neuroimaging and neuropsychology improves detection of Alzheimer's disease

By combining brain imaging analysis with a neuropsychological assessment, Sylvie Belleville achieved remarkable sensitivity (targeting the people who will develop the disease) and specificity (eliminating false positives, that is those who would remain stable). The level of accuracy of this classification system is the major breakthrough of the study. "When used individually, neuroimaging and neuropsychology are effective but only up to a certain point. It is when combining and analyzing the results from both methods that we could achieve such an exceptional level of accuracy," explained Sylvie Belleville.

Major benefits for Alzheimer's patients and for research

"For the moment, we can't diagnose this disease very early due to the lack of reliable protocols. Thus, there is a risk of erronously identifying the disease when trying to diagnose it too early. Identifying markers that correctly predict the subsequent onset of more severe symptoms that are sensitive and specific considerably reduces the uncertainty of early diagnosis. The innovation here is showing that two different approaches can be combined to aid in diagnosis," said Sylvie Belleville.

Researchers who work on Alzheimer's disease can build on this advance to go even further. "The clinical benefits of these extra two years are enormous. We can now evaluate the effectiveness of pharmacological and non-pharmacological therapies on the outcome of a clinical diagnosis of Alzheimer's disease in people identified with these tools. We could assess whether these treatments are more effective when administered earlier. The questions we now need to answer are whether pharmacological treatment started at the onset of early warning signs will slow the illness and whether brain plasticity could be stimulated in a more structured way to delay symptoms that cause disability."

Research summary

The objective of this work was to examine the potential benefit of combining two classes of measures for the detection of incipient dementia in individuals with mild cognitive impairment (MCI). Baseline measures included MRI measures of hippocampal volume, cortical thickness and white matter hyperintensities as well as different measures of episodic memory and executive control functions. The study identified the measures that best predicted which MCI patients would progress to dementia compared to those who remained stable. The strongest neuroimaging predictors were baseline cortical thickness in the right anterior cingulate and middle frontal gyri. For cognitive predictors, we found that deficits in both free recall and recognition episodic memory tasks were highly suggestive of progression to dementia. Cortical thinning in the right anterior cingulate gyrus, combined to controlled and familiarity-based retrieval deficits, achieved a classification accuracy of 87.5%, a specificity of 90.9% and a sensitivity of 83.3%. This predictive model including both classes of measures provided more accurate predictions than those based on neuroimaging or cognitive measures alone.

Source: University of Montreal

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
PET imaging and proteomics reveal distinct protein signatures in Alzheimer's disease progression