Machine learning model accurately classifies the stages of bladder cancer

NewsGuard 100/100 Score

The invasive and expensive diagnosis process of bladder cancer, which is one of the most common and aggressive cancers in the United States, may be soon helped by a novel non-invasive diagnostic method thanks to advances in machine learning research at the San Diego Supercomputer Center (SDSC), Moores Cancer Center, and CureMatch Incorporated.

Research scientists Igor Tsigelny and Valentina Kouznetsova have been working on the development of a machine-learning (ML) model that looks at a patient's metabolites and their chemical descriptors. The model accurately classifies the stages of bladder cancer in a patient, according to the researchers. Tsigelny is the lead author on a recently published study in the Metabolomics journal called 'Recognition of Early and Late Stages of Bladder Cancer using Metabolites and Machine Learning'.

When a patient experiences early symptoms of bladder cancer (e.g., blood in urine, pain during urination, etc.), the current method of diagnosis is often a painful, invasive series of tests.

From my point of view, it can be very easy for patients just give a sample of urine and our ML system can produce a "red flag" analysis result telling them to go immediately to an oncologist for testing. We believe that a lot of early stages and even more advanced stages of bladder cancer go untreated because patients don't pay attention to mediate pain signals from the body, and may be thinking that there are less dangerous problems causing the symptoms. Our machine learning model uses metabolites and corresponding genes to determine if a patient has bladder cancer and if so, at what stage."

Igor Tsigelny, lead author

More than 81,000 Americans were diagnosed with bladder cancer in 2018 and of those, more than 17,000 died from the condition, according to statistics from the American Cancer Society.

"The goal of this research is to lower that number and we believe that machine learning models can help us do that," said Kouznetsova. "Using a variety of computational tools, we studied pathways related to different stages of bladder cancer that can be used for diagnostics and monitoring of cancer progression."

The researchers trained the software – called multi-layer perceptron or MLP – with the data of urine metabolites of the patients with the different stages of the disease. Each stage has its own profile of metabolites. "MLP analyzes the chemical descriptor of the sets of metabolites related to each stage of cancer and creates AI models of these profiles," explained Kouznetsova.

Tsigelny, along with his work at UC San Diego, is the chief science officer and co-founder of CureMatch, which provides decision support for doctors in personalized cancer medicine. SDSC Director Michael Norman is a member of the CureMatch Advisory Board.

"With 4.5 million possibilities to combine around 300 FDA-approved cancer drugs, CureMatch targets multiple cancer mutations at the same time and determines the best combination treatment for each patient," explained Tsigelny. "While this study is not related to the current tasks of CureMatch, it may become so in the future."

Eden Romm, a bioinformatics specialist at CureMatch, and SDSC Research Experience for High School Students (REHS) participants Elliot Kim and Alan Zhu also participated in this study.

Source:
Journal reference:

Tsigelny, I.F. et al. (2019) Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics. doi.org/10.1007/s11306-019-1555-9.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New trials show promise for immune checkpoint blockers in early-stage lung cancer