Simple combination of pencils and paper can help create health-monitoring devices

NewsGuard 100/100 Score

One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin. In a new study, University of Missouri engineers demonstrated that the simple combination of pencils and paper could be used to create devices that might be used to monitor personal health.

Their findings are published in the journal Proceedings of the National Academy of Sciences.

Zheng Yan, an assistant professor in the College of Engineering, said many existing commercial on-skin biomedical devices often contain two major components -- a biomedical tracking component and a surrounding flexible material, such as plastic, to provide a supportive structure for the component to maintain an on-skin connection with a person's body.

The conventional approach for developing an on-skin biomedical electronic device is usually complex and often expensive to produce. In contrast, our approach is low-cost and very simple. We can make a similar device using widely available pencils and paper."

Zheng Yan, Assitant Professor, College of Engineering, University of Missouri

Since its invention, pencils -- made of lead including various levels of graphite, clay and wax -- have often been used for writing and drawing.

In the study, the researchers discovered that pencils containing more than 90% graphite are able to conduct a high amount of energy created from the friction between paper and pencil caused by drawing or writing. Specifically, the researchers found pencils with 93% graphite were the best for creating a variety of on-skin bioelectronic devices drawn on commercial office copy paper.

Yan said a biocompatible spray-on adhesive could also be applied to the paper to help it stick better to a person's skin.

The researchers said their discovery could have broad future applications in home-based, personalized health care, education and remote scientific research such as during the COVID-19 pandemic. Yan said the group's next step would be to further develop and test the use of the biomedical components, including electrophysiological, temperature and biochemical sensors.

"For example, if a person has a sleep issue, we could draw a biomedical device that could help monitor that person's sleep levels," he said. "Or in the classroom, a teacher could engage students by incorporating the creation of a wearable device using pencils and paper into a lesson plan. Furthermore, this low-cost, easily customizable approach could allow scientists to conduct research at home, such as during a pandemic."

An additional benefit to their approach, Yan said, is that paper can decompose in about a week, compared to many commercial devices that contain components that are not easily broken down.

Source:
Journal reference:

Xu, Y., et al. (2020) Pencil–paper on-skin electronics. Proceedings of the National Academy of Sciences. doi.org/10.1073/pnas.2008422117.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study finds interferon-γ release assays more effective than skin tests in predicting tuberculosis