Exploring the effects of dietary fiber on gut microbiome and inflammatory diseases

In a recent study published in Medicine in Microecology, researchers reviewed how dietary fibers modulate the composition and function of gut microbiota.

Study: The gut microbiome: linking dietary fiber to inflammatory diseases. Image Credit: Alpha Tauri 3D Graphics/Shutterstock
Study: The gut microbiome: linking dietary fiber to inflammatory diseases. Image Credit: Alpha Tauri 3D Graphics/Shutterstock

Diet is considered an important factor in shaping the microbiome of the human gut. People consume less dietary fiber due to the rise of Western diets (high in simple carbohydrates and fats and low in fiber) associated with industrialization. These diets may impact the gut microbial composition and negatively affect the host’s physiology, metabolism, and immunity.

Dietary fibers are complex polymeric carbohydrates that cannot be metabolized by enzymes encoded by the human genome and are metabolized by gut microbes through anaerobic fermentation. Epidemiologic studies suggest an increased risk of chronic inflammatory diseases associated with a lower dietary fiber intake. The gut microbiome regulates host metabolism and immune homeostasis.

Different dietary fibers and their metabolic products, such as short-chain fatty acids (SCFAs), can profoundly impact hosts and modulate gut microbial composition. Therefore, exploring how dietary fibers regulate host microbial communities can allow for targeted therapeutic interventions. As such, in the present study, the authors illustrate the effects of dietary fiber interventions on the gut microbiome and inflammatory diseases.

Dietary fibers influence gut microbiota

One study reported that consumption of chicory-derived inulin for a short period increased the proportion of Anaerostipes and Bifidobacterium in healthy adults with mild constipation. Studies have uncovered that inulin and pectin promote the growth of distinct microbial communities when supplied as a sole energy source to colonic microbes in vitro.

A long-term low-fiber diet can progressively diminish microbial diversity in mice over several generations, which is unrecoverable even after reinstating a high-fiber diet.

Notwithstanding the multiple studies investigating the effects of dietary fibers on gut microbial composition in animal models, there are limited studies in humans.

Rural populations and those from less-developed countries consume more fiber than urban/industrialized populations. A study in the United States concluded that a plant-based fiber-rich diet increased the proportion of Roseburia, Prevotella, Eubacterium, and Ruminococcus, which metabolize plant polysaccharides.

A meta-analysis reported that dietary fiber intervention increased the fecal abundance of Lactobacillus and Bifidobacterium spp., but the alpha diversity was unchanged. Consuming vegetables and whole grains was found to augment microbial diversity in pregnant individuals who were overweight or obese.

Dietary fiber breakdown is regulated by carbohydrate-active enzymes (CAZymes), including carbohydrate esterases (CEs) and glycoside hydrolases (GHs), polysaccharide lyases (PLs), and auxiliary activities. Microbial genes encoding CAZymes govern the ability of fiber utilization. Bacteroidetes are the most common fiber-degrading bacteria, with 18 CEs, 17 PLs, and 269 GHs. In vitro studies suggest that bacteria show distinct preferences for the same dietary fiber.

Effects of dietary fiber on inflammatory diseases

One study observed significantly lower C-reactive protein (CRP) levels in healthy adult males taking dietary fiber. Two Swedish studies indicated that the Mediterranean diet was associated with a reduced risk of late-onset Crohn’s disease, a subtype of inflammatory bowel disease (IBD). In contrast, poor adherence to the Mediterranean diet elevated the risk by 12%.

The Mediterranean diet improves symptoms and lowers IBD risk and mortality. Dietary fibers can protect the intestinal barrier; for instance, a study found that a high-fiber diet protected mice from colitis. Fiber deprivation can deplete the mucus layer and disrupt the intestinal wall, increasing its permeability.

High-fiber diets have been shown to reduce the secretion of pro-inflammatory cytokines and chemokines in rheumatoid arthritis (RA) patients. In addition, RA patients taking a vegan diet had significantly less swollen and tender joints, pain, low CRP levels, and erythrocyte sedimentation rate. The mean disease activity score decreased in RA patients after a week of Mediterranean diet consumption.

Clinical applications of dietary fiber

Prebiotics represent one of the key approaches to addressing gut microbial dysbiosis. Dietary interventions may be classified as low-fiber, high-fiber, or supplemental fiber. High-fiber dietary interventions significantly increase gut microbial diversity relative to supplemental fiber interventions. A study demonstrated that a Mediterranean-inspired diet decreased inflammatory markers and normalized gut microbiota in patients with Crohn’s disease.

The International Organization for the study of IBDs recommends the intake of vegetables and fruits in Crohn’s disease patients. According to a systematic review, patients with uncomplicated diverticulitis should follow a liberalized and high-fiber diet; nevertheless, there is limited evidence for the benefits of dietary fiber in preventing diverticulitis.

Concluding remarks

Taken together, numerous studies highlight the beneficial outcomes of high-fiber dietary interventions. Thus, dietary fiber interventions may serve as a tool to regulate gut microbiota. Future research should focus on how personalized diets modulate host responses and the efficacy of small-molecule therapies against specific microbial pathways for precision medicine.

Journal reference:
Tarun Sai Lomte

Written by

Tarun Sai Lomte

Tarun is a writer based in Hyderabad, India. He has a Master’s degree in Biotechnology from the University of Hyderabad and is enthusiastic about scientific research. He enjoys reading research papers and literature reviews and is passionate about writing.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sai Lomte, Tarun. (2022, December 02). Exploring the effects of dietary fiber on gut microbiome and inflammatory diseases. News-Medical. Retrieved on September 19, 2024 from https://www.news-medical.net/news/20221202/Exploring-the-effects-of-dietary-fiber-on-gut-microbiome-and-inflammatory-diseases.aspx.

  • MLA

    Sai Lomte, Tarun. "Exploring the effects of dietary fiber on gut microbiome and inflammatory diseases". News-Medical. 19 September 2024. <https://www.news-medical.net/news/20221202/Exploring-the-effects-of-dietary-fiber-on-gut-microbiome-and-inflammatory-diseases.aspx>.

  • Chicago

    Sai Lomte, Tarun. "Exploring the effects of dietary fiber on gut microbiome and inflammatory diseases". News-Medical. https://www.news-medical.net/news/20221202/Exploring-the-effects-of-dietary-fiber-on-gut-microbiome-and-inflammatory-diseases.aspx. (accessed September 19, 2024).

  • Harvard

    Sai Lomte, Tarun. 2022. Exploring the effects of dietary fiber on gut microbiome and inflammatory diseases. News-Medical, viewed 19 September 2024, https://www.news-medical.net/news/20221202/Exploring-the-effects-of-dietary-fiber-on-gut-microbiome-and-inflammatory-diseases.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Uncovering new antibiotics from the human gut microbiome