Complex assembly process involved in DNA virus replication revealed

NewsGuard 100/100 Score

In a twist on the question, "Which came first, the chicken or the egg?", scientists have long faced a similar question about how human adenovirus replicates: "Which comes first, assembly of the viral particle, or packaging of the viral genome?" Now, in a new study published today in Nature, researchers at Children's Hospital of Philadelphia (CHOP) have answered that question, showing that viral proteins use a process called phase separation to coordinate production of viral progeny.

This study answers a fundamentally important question: how a viral nucleic acid gets inside a particle so that viral offspring can be delivered to cells. These findings have broad implications, from potential therapeutic interventions to improved gene therapy delivery, in addition to expanding our understanding of basic cell biology."

Matthew Charman, PhD, research associate in the Weitzman Lab at Children's Hospital of Philadelphia

Viruses hijack host cellular processes to replicate and produce infectious offspring that are key for viral spread and transmission. To do so, they must both replicate their viral genomes and package those genomes into viral particles, so that the infectious cycle can continue. However, little is known about how genome replication, particle assembly, and genome packaging are coordinated in the crowded nuclear environment.

"If we think of viral replication as an old-fashioned milk assembly line, we know how the milk bottles are formed and that they come out filled, but prior to this study, the process of filling them was somewhat of a black box," said senior author Matthew D. Weitzman, PhD, a professor in CHOP's Department of Pathology and Laboratory Medicine. "Our findings suggest that the viral particle forms around the viral genome. Extending the analogy, many have assumed that the bottle must be made before being filled, but it turns out the bottle is actually formed around the milk. Led by Dr. Charman, we have shown that a biophysical process known as phase separation allows this process to occur in an orderly, coordinated fashion."

Emerging evidence suggests that membraneless compartments form inside virus-infected cells by phase separation. These membraneless compartments, known as biomolecular condensates (BMCs), can regulate biological processes by concentrating or sequestering biomolecules in an enriched dense phase, while limiting their concentration in the light phase. Although BMCs have been linked to several viral processes, there was insufficient evidence that phase separation contributes functionally to the assembly of infectious viral offspring in infected cells.

To investigate the potential role of BMCs in this process, the researchers studied adenovirus, a nuclear-replicating DNA virus. Because the adenovirus proteins involved in genome replication are distinct from those involved in particle assembly and genome packaging, the researchers reasoned focusing on this virus would allow them to dissect and more easily identify the role of phase separation in specific viral processes.

Through a variety of techniques, including homopropargylglycine (HPG) labeling and fluorophore click chemistry, the researchers demonstrated that the adenovirus 52 kDa protein – a dedicated assembly/packaging protein – makes its own membraneless structures through phase separation and plays a critical role in the coordinated assembly of new infectious particles. They showed that not only does the 52 kDa protein organize viral capsid proteins into nuclear BMCs, but also that this organization is essential for the assembly of complete, packaged particles containing viral genomes.

Additionally, the researchers performed experiments with a mutant adenovirus lacking the 52 kDa protein and showed that incomplete capsids formed in the absence of viral BMCs. Thus, the researchers were able to show that by altering the formation of these membraneless structures within the cell, the "assembly line" producing viral offspring no longer functioned properly.

"Now knowing these steps, the question becomes: could we reengineer viruses based on this biological process to, for example, become better delivery vehicles for innovations like gene therapy?" Dr. Charman said. "Understanding how viruses are made opens up a world where we could not only potentially target those viruses more effectively in the future but also create gene therapy tools that lack the limitations of current delivery approaches."

Source:
Journal reference:

Charman, M., et al. (2023). A viral biomolecular condensate coordinates assembly of progeny particles. Nature. doi.org/10.1038/s41586-023-05887-y.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Baylor study reveals role of newly inherited DNA variants in recessive diseases