CrossDome tool helps predict the potential risks of T-cell immunotherapy

NewsGuard 100/100 Score

Researchers at the University of Houston are working to make T-cell immunotherapy safer, developing a tool called CrossDome, which uses a combination of genetic and biochemical information to predict if T-cell immunotherapies might mistakenly attack healthy cells.

T-cell based immunotherapies hold tremendous potential in the fight against cancer and infectious diseases, thanks to their capacity to specifically target diseased cells, including cancer metastasis. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off targets displayed by healthy cells.

In one case, scientists created special T-cells that were supposed to target a protein found in a type of skin cancer called melanoma. However, these T-cells also ended up attacking a different protein found in the heart cells of some patients. This caused severe damage to the heart.

"Our CrossDome tool helps predict the potential risks of T-cell-based immunotherapy. It uses a combination of different types of information (called multi-omics) to make predictions and identify whether the treatment might accidentally harm healthy cells in addition to targeting the intended diseased cells," said Dinler Antunes, assistant professor of Computational Biology and member of the Center for Nuclear Receptors and Cell Signaling. His work is published in Frontiers in Immunology. "By analyzing various factors, CrossDome provides insights into the safety of T-cell-based immunotherapies and may help researchers develop safer treatments."

To test the effectiveness of CrossDome, Antunes and Andre F. Fonseca, a postdoctoral fellow in Altunes' lab, used it to predict potential mistakes in 16 well-known cases of T-cell cross-reactivity, including the melanoma-heart damage case. The tool successfully identified the heart protein as a potential target for the T-cells, ranking it as a high-risk candidate among thousands of other proteins.

Strengthening the results, Antunes combined information from different functional data sets to help assess how much certain genes are expressed and how likely they are to bind with a certain molecule called HLA, to trigger an immune response.

This information helps us decide which potential off-target genes are worth testing in experiments."

Dinler Antunes, Assistant Professor of Computational Biology

CrossDome users can be either technical or non-technical. It has features that allow more advanced control for those who know how to code, as well as an easy-to-use interface for those who don't have coding experience.

Source:
Journal reference:

Fonseca, A. F. & Antunes, D. A., (2023) CrossDome: an interactive R package to predict cross-reactivity risk using immunopeptidomics databases. Frontiers in Immunology. doi.org/10.3389/fimmu.2023.1142573.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New workflow identifies shared cancer targets, advancing immunotherapy