Fully electrical proof-of-concept biosensor for detecting RNA cancer biomarker sequences in solution at the single-molecule level

NewsGuard 100/100 Score

In a recent study published in Scientific Reports, a group of researchers investigated single-molecule electrical detection of ribonucleic acid (RNA) cancer biomarkers, demonstrating high sensitivity and specificity in distinguishing mutants and paving the way for developing miniaturized electrical biosensors for cancer screening.

Electrical detection of RNA cancer biomarkers at the single-molecule level
Study: Electrical detection of RNA cancer biomarkers at the single-molecule level. Image Credit: CROCOTHERY/Shutterstock.com

Background

Cancer, a leading cause of death with an estimated 10 million fatalities in 2020, continues to rise in prevalence in the human population. Early detection through non-invasive liquid biopsies can potentially reduce mortality rates by identifying cancer-specific biomarkers such as circulating tumor nucleic acids (ctNAs).

However, detection is challenging due to their low concentrations and mutation frequency. The scanning tunneling microscopic (STM)-assisted break junction method (STMBJ) holds promise for addressing this, enabling single-molecule detection and identification of RNA.

About the study

In this study, the authors selected Kirsten rat sarcoma (KRAS) mutations as potential cancer biomarkers. The KRAS Exon 2 sequence was provided by collaborators from UMass Medical School. From this sequence, they identified two oligonucleotide sequences as deoxyribonucleic acid (DNA) probes, which contained G12C and G12V mutations, with the mutated base situated in the center of each sequence.

The DNA probes were evaluated with integrated DNA technologies (IDT) Oligo Analyzer and the national center for biotechnology information (NCBI) basic local alignment search tool (BLAST) to check for specificities and secondary structures. The DNA probes and corresponding RNA targets were synthesized by Biosynthesis Inc. (USA), and thermal hybridization was performed to form DNA:RNA hybrids in phosphate buffer.

Stringent cleaning protocols were followed to prepare glassware and Teflon cells, including the use of a piranha solution. Gold wire loops were used as electrodes in the electropolishing of an Au single crystal, which served as the substrate. A phosphate buffer was used for all experiments, with various chemicals sourced from Sigma-Aldrich.

STM-BJ measurements were performed at room temperature using a Pico-STM Molecular Imaging head and a Digital Instruments Nanoscope IIIa controller. Thiol groups in the DNA probes were reduced by Tris (2-carboxyethyl) phosphine (TCEP) for conductance measurements, while the STM tip was created from a gold wire and coated with Apiezon wax.

The STM-BJ method was used to form a gap between the gold substrate and STM tip, which was bridged by a molecule. A customized LabVIEW program was used to control the STM tip and analyze the data. A semi-logarithmic conductance histogram was generated to represent the most probable conductance of the specific molecular junction. The statistical analysis was rigorous, with only 1.5% of initial data traces showing clear steps being selected for final analysis.

Study results

In the present study, the researchers had chosen KRAS Exon 2, comparing the wild-type sequence to the G12C and G12V mutations. The balance of sequence length was pivotal for single-molecule electrical conductance applications; it was found that shorter sequences resulted in higher conductance (enhanced signal-to-noise ratio), but a certain minimum length was necessary to ensure specificity for KRAS.

With the assistance of the NCBI blast tool, alignments of prospective sequences ranging from 20–10 bases were carried out, determining the optimal short sequences which retained specificity to be 18 bases long.

Various bioinformatic tools were used for sequence analysis, determining guanine-cytosine (GC) percentage, melting temperature, and potential secondary structures with the assistance of the IDT Oligo Analyzer tool. The chosen sequences demonstrated high melting temperatures and did not form significant secondary structures at room temperature.

The STMBJ method was employed to measure the charge transport conductance values in individual KRAS G12V and G12C RNA molecules by creating single-molecule junctions in a nanogap between STM electrodes. DNA probes, modified with thiol groups at both the 3’ and 5’ ends, were used to bind to the electrodes as well as hybridize with the target complementary RNA sequence, thus closing the biomolecular electronics circuit and generating a specific conductance step.

When no bound molecules were present, "steps" were not observed between the two electrodes, but they were noticeable when a single molecule was bound. After collecting thousands of conductance traces, a conductance histogram was created using curves with steps to identify the average conductance value for the specific sequence.

The results presented the first single-molecule measurement of a human RNA sequence and the first attempt at electrical detection of individual cancer biomarker molecules. From a biosensing perspective, this implied that single-molecule conductance from a carefully designed DNA probe to capture a nucleic acid biomarker could distinguish a cancer biomarker molecule from the equivalent wild-type “healthy” sequence that differed by just a single base with a fourfold separation between the signals.

This single-molecule biosensing method was further examined by trying to detect both sequences simultaneously in situ, since in liquid biopsy samples, both mutant and wild-type KRAS sequences would be present in the solution.

Having demonstrated the potential for electrical detection of individual cancer biomarkers, in situ hybridization experiments were conducted in the presence of wild-type and mutant RNA sequences to test the specificity of this biosensing method further. Sensitivity was evaluated by performing titration experiments on KRAS G12C in order to determine the limit of detection (LOD) of the system.

Concentrations ranging from 6 zM (zepto molar, 10−21 M) to 300 μM were tested for the 18-base pairs KRAS G12C exact match DNA:RNA hybrids. The LOD, defined as the minimum target concentration that yields a signal-to-noise ratio (SNR) of at least 3, was effectively an individual molecule.

Journal reference:
Vijay Kumar Malesu

Written by

Vijay Kumar Malesu

Vijay holds a Ph.D. in Biotechnology and possesses a deep passion for microbiology. His academic journey has allowed him to delve deeper into understanding the intricate world of microorganisms. Through his research and studies, he has gained expertise in various aspects of microbiology, which includes microbial genetics, microbial physiology, and microbial ecology. Vijay has six years of scientific research experience at renowned research institutes such as the Indian Council for Agricultural Research and KIIT University. He has worked on diverse projects in microbiology, biopolymers, and drug delivery. His contributions to these areas have provided him with a comprehensive understanding of the subject matter and the ability to tackle complex research challenges.    

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Kumar Malesu, Vijay. (2023, August 03). Fully electrical proof-of-concept biosensor for detecting RNA cancer biomarker sequences in solution at the single-molecule level. News-Medical. Retrieved on April 27, 2024 from https://www.news-medical.net/news/20230803/Fully-electrical-proof-of-concept-biosensor-for-detecting-RNA-cancer-biomarker-sequences-in-solution-at-the-single-molecule-level.aspx.

  • MLA

    Kumar Malesu, Vijay. "Fully electrical proof-of-concept biosensor for detecting RNA cancer biomarker sequences in solution at the single-molecule level". News-Medical. 27 April 2024. <https://www.news-medical.net/news/20230803/Fully-electrical-proof-of-concept-biosensor-for-detecting-RNA-cancer-biomarker-sequences-in-solution-at-the-single-molecule-level.aspx>.

  • Chicago

    Kumar Malesu, Vijay. "Fully electrical proof-of-concept biosensor for detecting RNA cancer biomarker sequences in solution at the single-molecule level". News-Medical. https://www.news-medical.net/news/20230803/Fully-electrical-proof-of-concept-biosensor-for-detecting-RNA-cancer-biomarker-sequences-in-solution-at-the-single-molecule-level.aspx. (accessed April 27, 2024).

  • Harvard

    Kumar Malesu, Vijay. 2023. Fully electrical proof-of-concept biosensor for detecting RNA cancer biomarker sequences in solution at the single-molecule level. News-Medical, viewed 27 April 2024, https://www.news-medical.net/news/20230803/Fully-electrical-proof-of-concept-biosensor-for-detecting-RNA-cancer-biomarker-sequences-in-solution-at-the-single-molecule-level.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
First UK real-world study shows promise for sacituzumab govitecan in metastatic breast cancer