First-of-its-kind research shines light on how certain pathogens can outwit the body's immune system

NewsGuard 100/100 Score

In a first-of-its-kind research breakthrough, a team of scientists at the University of Massachusetts Amherst has analyzed and described what they call the "mosquito effect," which sheds light on how certain pathogens, such as cancerous tumor cells, can outwit the body's immune system.

Just as mosquitoes ingest their host's blood, the immune system's T cells incorporate cytoplasmic material from tumors into their own cytoplasm. While it has long been known that many kinds of cells can transfer cellular material from one to another, the transfer of the cytoplasm has never been observed in T cells. Subsequent single-cell RNA (scRNA) sequencing shows that cytoplasm from tumor cells alters the machinery responsible for protein coding in the host T cell. The research, reported recently in the journal Frontiers in Immunology, is a major step forward in understanding how tumors can successfully evade the immune system, and thus a step toward more effective treatments.

One of the great mysteries in medicine is how certain pathogens can suppress the immune system in order to spread wildly. There are many different parts to the immune system, but among the most important are T cells, which identify and attack pathogens, and the T regulatory cells, which tell the T cells when it's safe to call off the attack, limiting collateral damage to the body.

And yet, cancerous tumor cells have figured out how to short-circuit the immune system, with often catastrophic results for healthy tissues. How, exactly, tumor cells do this is unknown, but, says Leonid Pobezinsky, associate professor of veterinary and animal sciences at UMass Amherst and the paper's senior author, "we've observed for the very first time that T cells and T regulatory cells suck up a bit of tumor cytoplasm and integrate it into their own."

To make the discovery, Pobezinsky and his team, including first author Kaito Hioki, graduate student in veterinary and animal science at UMass Amherst, and Elena Pobezinskaya, research assistant professor also in veterinary and animal sciences at UMass and co-senior author of the paper, engineered tumor cells to produce an ultrabright fluorescent protein called ZsGreen. They then introduced the green-glowing tumor cells into a mouse model. After eight days, the model's tumor-infiltrating immune cells were gathered and analyzed using state-of-the-art equipment in the Flow Cytometry lab at UMass Amherst's Institute for Applied Life Sciences.

What we saw was striking. The T cells were glowing and uniform green, which tells us that that the tumor's cytoplasm had been distributed widely throughout the T cell."

Elena Pobezinskaya, research assistant professor in veterinary and animal sciences at UMass

Even more surprising was to see the T regulatory cells light up as well. And the team found that the cells glowing the brightest were the ones most exhausted from their fight against the tumor. Finally, the team determined that the transference of cellular material requires the cells of the tumor and the immune system to come into physical contact with each other.

"We know that tumor cells use multiple ways to suppress the immune system," says Hioki. "We also now know that T cells incorporate some of the tumor in their own cytoplasm, and that the least aggressive immune cells have the most tumor cytoplasm in them. What we don't know is why. Are the T cells looking for food? Are they trying to survey and adapt to their new environment by taking in parts of other cells? And finally, is the tumor hijacking this mechanism to shut down T cells?"

These questions are all next steps for the authors, whose work was supported by the National Institutes for Health and the National Research Service Award.

Journal reference:

Hioki, K. A., et al. (2023) The mosquito effect: regulatory and effector T cells acquire cytoplasmic material from tumor cells through intercellular transfer. Frontiers in Immunology.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Revolutionizing brain tumor treatment: the rise of AI in neuro-oncology