Comprehensive protein analysis reveals potential targets for treating dialysis-related amyloidosis

Dialysis patients often develop dialysis-related amyloidosis and exhibit bone and joint disorders that impair their activity of daily living. Blood purification devices consisting of hexadecyl-immobilized cellulose beads aimed at removing the precursor protein, β2- microglobulin (β2-m), are used in the treatment of dialysis-related amyloidosis. Dr. Yamamoto et al. investigated that comprehensive analysis of proteins adsorbed onto blood purification devices revealed the identification of 200 types of proteins, including β2-m. Among these, several molecules, such as lysozyme, were shown to be involved in amyloid fibril formation.

I. Background of the study

Patients with advanced chronic kidney disease (CKD) require kidney replacement therapy, such as hemodialysis, to manage their condition. Hemodialysis patients often experience various symptoms, leading to a compromised quality of life and reduced activity levels.

Itching is a common symptom frequently observed in hemodialysis patients. Although its exact causes remain unclear, a survey conducted in Japan in 2000 found that itching was present in 73% of hemodialysis patients, and it was associated with elevated levels of β2-microglobulin, calcium, phosphorus, or parathyroid hormone in the blood. Subsequently, improvements in hemodialysis therapy and pharmacological treatments have led to changes in the severity of itching and its associated factors in hemodialysis patients.

Uremic toxins are a group of molecules whose concentrations increase in the blood due to kidney disease. Those molecules are associated with systemic diseases and prognosis in patients with end-stage kidney disease. Among them, molecules with high protein-bound properties, called PBUTs, such as indoxyl sulfate, are difficult to remove by dialysis therapy and have been reported to be associated with various pathologies. However, there have been no reports regarding their association with itching. in hemodialysis patients.

Therefore, Dr. Yamamoto et al. conducted a study to investigate the details of itching and factors associated with it, particularly focusing on PBUTs in hemodialysis patients.

II. Overview of the study

In this study, Yamamoto et al. extracted adsorbed proteins from β2-m adsorption columns on hemodialysis patients with dialysis-related amyloidosis, and analyzed them through mass spectrometry (Figure). As a result, 200 types of proteins, including β2-m, were detected.

Among them, four proteins (lysozyme, angiogenin, matrix Gla protein, and complement factor D) were identified, which are present in amyloid tissue and highly adsorbed by the β2-m adsorption column. When β2-m was reacted with those proteins in vitro, those proteins acted β2-m amyloid fibril formation.

III. Publication of research findings

The research findings were published in the scientific journal Amyloid: Journal of Protein Folding Disorders on February 11, 2024.

Source:
Journal reference:

Yamamoto, S., et al. (2024). Mass spectrometry-based proteomic analysis of proteins adsorbed by hexadecyl-immobilized cellulose bead column for the treatment of dialysis-related amyloidosis. Amyloid. doi.org/10.1080/13506129.2024.2315148.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
60 years in the making: Nanoparticles revolutionize nucleotide delivery